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Abstract 
We show, how the forecasting performance of models varies, when certain inaccuracies in 
the pseudo real-time experiment take place. We consider the case of Russian CPI 
forecasting and estimate several models on not seasonally adjusted data vintages. 
Particular attention is paid to the availability of the variables at the moment of forecast: we 
take into account the release timing of the series and the corresponding release delays, in 
order to reconstruct the forecasting in real-time. In the series of experiments, we quantify 
how each of these issues affect the out-of-sample error. We illustrate, that the neglect of the 
release timing generally lowers the errors. The same is true for the use of seasonally 
adjusted data. The impact of the data vintages depends on the model and forecasting 
period. The overall effect of all three inaccuracies varies from 8% to 17% depending on the 
forecasting horizon. This means, that the actual forecasting error can be significantly 
underestimated, when inaccurate pseudo real-time experiment is run. We underline the 
need to take these aspects into account, when the real-time forecasting is considered. 
 
Kew words: inflation, pseudo real-time forecasting, data vintages, machine learning, 

neural networks. 

JEL-classification: C14, C45, C51, C53. 
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Introduction 

Although it is common in empirical macroeconomics to work with the revised data, a 

growing body of literature suggests, that analysis using real-time data often leads to the 

substantially different conclusions, than the work which ignores data revisions (Croushore, 

Stark, 2001; Orphanides, 2001; Koenig, 2003; Molodtsova et al., 2008). More and more 

evidence indicate the importance of using real-time data, when constructing forecasting 

models and performing monetary policy analysis (Fernandez et al., 2011). 

In this research, on basis of the unique for Russia real-time dataset we aim to define, 

how different inaccuracies during pseudo-real time experiments affect the estimates of the 

model performance. Namely, we focus on the use of not-seasonally adjusted vintages of 

timeseries (data which include initial values and revisions), consider it as the data for an 

“ideal” experiment and consequently add one of the inaccuracies to define the impact, each 

of them has on the estimation of out-of-sample model performance (linear regression, 

random forest, gradient boosting, neural networks). Our focus is not on the choice of the 

optimal modelling techniques, but on constructing real-time forecasting exercises. 

The ability to forecast accurately inflation is a crucial for the development of monetary 

policy by the central bank, that is why we consider the CPI forecasting and investigate, 

how these aspects can affect the CPI forecasting errors. Within this task, we construct the 

forecasts for four sets of data in order to define an impact of several inaccuracies of 

pseudo-real-time forecasting. In the first estimation experiment we run our models on the 

vintages of original, not seasonally adjusted, timeseries, taking into account the timing of 

the data releases. By the second experiment we determine, how the results would change, 

if we include all data without any regard to the data availability, when the forecasts are 

made. This aspect is important, because macroeconomic and financial data usually have 

different release lags. However, often macroeconomic forecasting is based on the data, 

that include all available up to that point timeseries. If the forecasts were constructed in 

real time, some of these series may not have been yet released. By comparing the first 

and the second experiment we can quantify the effect of data release timing. By the third 

experiment we define the role of data vintages: how models’ forecasting performance 
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would change, if we neglect data revisions and take the final values, which in reality are 

not available, when the forecast is made. In the last experiment the forecasts are based 

on seasonally adjusted data without vintages and not taking into account the release dates. 

Seasonal adjustment is a subjective procedure, which leads to the analysis of 

unobservable series, highly dependent on the applied method of seasonal adjustment. 

Moreover, the use of seasonally adjusted data complicates the comparison between 

research results, while not seasonally adjusted data allow to compare the results in terms 

of observable variables, making the forecasting with not seasonally adjusted data more 

correct. Nevertheless, the combination of these data characteristics (seasonally adjusted 

revised data and the neglect of the data availability) often occurs in the forecasting 

literature, underlining the need to define their contribution to the forecasting error. 

Main results of this research come from the comparison of the results between the 

experiments. First, we show that the estimates based on the data, which incorporate the 

series with different lags (when we take into account the release timing of series) generally 

have higher out-of-sample forecasting error, in comparison to the case, when all the series 

are treated as available at the time of forecast (for 8 out of 12 cases). This is an expected 

result, since in this case for some timeseries we use less recent data: when the forecasts 

are made, vintages are available with two months lag. This difference amounts to 10,5% 

on average for all four models for one month in advance (8,0% and 1,7% for three and six 

lags) Second, we compare estimation results based on the vintages and the data after 

revisions. In this case, the results are inconclusive, and do not point in favor of one 

experiment or the other. Some models and forecasting horizons are more sensitive to the 

use of data vintages and have lower forecasting error, some do not (in 7 out of 12 cases 

forecasting on revised data has an advantage). Finally, the last comparison shows, that 

the use of seasonal adjustment leads to significantly lower forecasting errors for most of 

the models and forecasting horizons. Overall, the joint effect of all three inaccuracies varies 

from 7,6% to 16,8% of average monthly CPI depending on the forecasting horizon.1 This 

may result in the considerable underestimation of the error in the case of real-time 

                                                 
1 Average monthly CPI was calculated on the basis of data included in the test set. 
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forecasting: when part of timeseries is not published yet (different timing of releases), for 

some of them only preliminary numbers are available (data vintages) and forecasts are 

based on the seasonally adjusted data, which lower the error further. 

In addition to the error decomposition depending on certain inaccuracies in prediction 

exercises, we contribute to the literature on Russian CPI forecasting in the following way: 

1. This is the first research, which uses Russian data vintages in economic forecasting.2 

2. We propose first reproducible real-time benchmark for Russian inflation forecasting. 

3. In our research we consider a variety of popular machine learning models (including 

ensemble methods and Bayesian neural networks). 

Although, the methodology of the research is relatively new for the forecasting on the 

Russian data, the application of machine learning (ML) techniques is known to have a great 

potential for macroeconomic forecasting. Short overview of the related literature on the 

application of ML models in economic forecasting is presented in the following section. 

Alternative, traditional for macroeconomic research approaches to the forecasting in 

data-rich environment include pooling or averaging of bi-variate forecasts (Stock, Watson 

(2003); Rossi, Sekhposyan, 2010) and direct pooling of information using a high-

dimensional models (see Forni et al. (2000, 2005); Stock, Watson (2002a, b) for DFM, 

Banbura et al. (2010) for Bayesian VAR).3 However, an analysis of a wide range of models 

is out of the scope of this paper, so we do not cover these methods in details here. 

The paper is organized as follows. Next section gives an overview of the relevant 

research on analysis on real-time data and examples of ML applications in economic 

forecasting. Third section provides an overview of the considered experiments and details 

on the data. Next cross-validation, optimization procedure and models, applied to the CPI 

forecasting, are described. Then we provide the estimation results and show the impact of 

each data characteristic to the out-of-sample forecasting error. The last section concludes. 

  

                                                 
2 The details on the data are provided in Ponomarenko et al. (2021). 
3 Among the recent research on the forecasting of Russian CPI one may name Styrin (2019), where the CPI 
dynamics is predicted using dynamic model averaging. 
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2. Related research 

2.1. Real-time data 

Croushore (2011) provides an overview of the existing research on real-time data 

analysis, dividing it into six areas: data revisions, structural macroeconomic modelling, 

forecasting, monetary policy, current analysis and revisions to conceptual variables. The 

research shows that real-time data matter in a variety of contexts. Overall, the results show, 

that the forecasting ability in real time is much worse, than the forecasting ability, when the 

revised data are used. Moreover, forecasts of levels are very sensitive to data revisions, 

whereas forecasts of growth rates are much less sensitive (Howrey, 1996). Filardo (1999) 

shows, how unreliable in real time are models, which attempt to predict recessions, as 

these models are usually based on revised data. As for the inflation, Koenig (2003) shows, 

that while markup is a useful predictor of inflation with revised data it fails to predict inflation 

in real-time. Orphanides, Norden (2005) illustrate, that in real-time the estimation of output 

gaps is so much affected by uncertainty, that they cannot be reliably used in inflation 

forecasting. Forecasts of exchange rates are known to be even more sensitive to real-time 

data issues (Faust et al., 2003; Molodtsova, 2008; Molodtsova et al., 2008). 

The question of whether the use of real-time data leads to the different forecasts, than 

when the latest-available data are used goes back to the first paper by Denton, Kuiper 

(1965), who on the case of Canada find, that the use of real-time data or latest-available 

data leads to the significant differences in the forecasts. Cole (1969) also shows, that data 

errors can reduce forecast efficiency and lead to biased forecasts, as the result, there can 

be significant differences between forecasts made with different data sets. Similar results 

were obtained by Trivellato, Rettore (1986), who showed on Italian data, that data errors 

in a simultaneous-equations model have large effects. 

Series of papers afterwards advocated in favor of using real-time data and bring 

attention to the consequences of using real-time data as opposed to the latest available. 

Stark, Croushore (2002) discuss, how the forecasts are affected by the use of real-time 

data rather than latest-available data. They bring attention to the fact, that in the forecasting 

literature the results are usually obtained using the data set available to the model’s 
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developer, but the data would not have been available to him in real-time. They investigate, 

how the vintage data affect such forecasts and advocate in favour of real-time data rather 

than latest-available data. Forecasts made for a particular date can be quite different, 

depending on the vintage of data used: the RMSEs and MAEs of forecasts can differ 

between real-time data and latest-available data, when only short spans of observations 

are used, and been misleadingly low when latest-available data are used. They also find, 

that inflation forecasts are more sensitive to the choice between real-time and latest-

available data, than real output forecasts. Stark, Croushore (2002) also show that the 

choice of lag length depends on whether latest-available data or real-time data are used. 

Croushore, Stark (2003) examine the nature of data revisions and investigate the 

robustness of the results of several key papers in macroeconomics (Kydland, Prescott, 

1990; Hall, 1978; Blanchard, Quah, 1989) to different vintages. They show, that only the 

results of the former paper are robust to the use of different data vintages, underlining an 

importance of real-time data. 

Koenig et al. (2003) argue, that analysts should generally use data of as many 

different vintages as there are dates in the samples. More specifically, at every date within 

a sample, right-hand-side variables ought to be measured as they would have been at that 

time (so called “real-time-vintage data”). They consider three different ways of using real-

time data (depending on whether the real-time-vintage data on the left-hand side are used) 

and show on the example of GDP forecasting that out-of-sample forecasting performance 

of the model estimated using real-time-vintage data is superior to the one, obtained using 

conventional estimation. They advocate, that the most popular approach of using end-of-

sample-vintage data (estimation strategy 3 in our case) should generally be avoided. 

Kishor, Koenig (2012) present a method of adopting VAR analysis to account for data 

revisions. They apply the technique to employment and unemployment rate, real GDP and 

the GDP/consumption ratio and show, that in each case the proposed procedure 

outperforms the conventional VAR analysis. 

Clements, Galvao (2009) provide an evidence in favor of real-time vintage data within 

MIDAS model. In the following paper Clements, Galvao (2011) show, that a certain class of 

models can be used to forecast ‘fully revised’ or ‘post-revision’ values of past and future 
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observations, estimating the value of those forecasts in terms of their contribution to 

improving real-time estimates of the output gap, trend inflation and inflation gap. Their 

research was followed by Clements, Galvao (2013), who conduct an evaluation of vintage-

based VAR model forecasts for US inflation and output of a range of maturities of data using 

a variety of different target variables (forecasting future observations or revisions to past 

data). They show, that VAR models on a single variable estimated on data vintages can be 

successful in forecasting the data revisions process of inflation, but are less useful for US 

output growth. They also find only some evidence, that vintage-based VAR models provide 

more accurate forecasts of output growth, but clear evidence, that revisions to past inflation 

data are predictable. In the case of predicting Russian CPI, revisions can play a role only 

via explanatory variables since CPI series are not subject to any revisions. 

Being a brand-new practice for Russia, real-time datasets are more common in other 

countries. Croushore, Stark (2001) compiled and analyzed a large real-time dataset for 

macroeconomists on the US economy starting from 1965, bringing the attention to this 

subject. Later McCraken, Ng (2016) formed a big database for macroeconomic research, 

updated in real-time through Federal Reserve Economic Data (FRED) database. The data 

include historical vintages from august 1999 and is widely used in the literature. 

There exist several datasets with vintages on European economies as well. Giannone 

et al. (2012) presented a real-time database for the euro area. Fernandez et al. (2011) 

introduce a new international real-time dataset on OECD countries and illustrate the 

importance of using real-time data in macroeconomic analysis by considering several 

economic applications conducted in real-time perspective on the data on G7 economies. 

Being one of the first multicounty real-time datasets Fernandez et al. (2011) contributed to 

the papers with datasets on individual countries. Some examples of the data vintages on 

other countries include Egginton et al. (2002), who presented a real-time macro dataset for 

the UK, Clausen, Meier (2005); Sauer, Sturm (2007) and Gerberding et al. (2005), who 

collected the real-time data for Germany, and Nikolsko-Rzhevskyy (2011), who proposed a 

methodology of estimation forward-looking Taylor rules in real-time and illustrated it on the 

example of UK, Germany and Canada. 
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2.2. Applications of machine learning in economic forecasting 

Although been relatively new in application to the Russian data, ML models are widely 

used in international economic research. Tiffin (2016) along with Chakraborty, Joseph 

(2017) and Kapetanios, Papailias (2018) outline the potential of ML for central banking and 

policy analysis and provide a broad overview of the key ML techniques, their advantages 

and limitations. The comparison of forecasts of the standard and ML models provides an 

evidence in favour of ML models (e.g. Cook, Hallyz, 2017). There is an evidence in favour 

of ML techniques, especially neural networks (NNs), in forecasting the CPI in many other 

countries (Moshiri, Cameron, 2000; Chen et al., 2001; Szafranek, 2019; Hanif et al., 2018). 

The performance of NNs in forecasting inflation was also evaluated within a cross-country 

comparison with the results in favor of ML models (McAdam, McNelis, 2005; Choudhary, 

Haider, 2012). At the same time, there is opposite evidence, that NNs in fact does not 

outperform the standard models (Kock, Tersvirta, 2013; Catik, Karauka, 2012; lvarez-Daz, 

Gupta, 2015; Sermpinis et al., 2014; Zhang, Li, 2012). 

There is less evidence of applying boosting techniques in the CPI forecasting. 

However, Buchen, Wohlrabe (2011) apply it to the forecasting US industrial production, 

showing that boosting can be a serious competitor to other methods in the short run and 

that it performs best in the long run. Dpke et al. (2017) show that boosting has a better out-

of-sample performance, than probit models for the recessions prediction in Germany. 

To the best of our knowledge, this is the first research on forecasting abilities of neural 

networks, gradient boosting and random forest with optimal architectures in the case of 

Russian CPI. The closest to this research is Baybuza (2018), who shows, that random 

forest and gradient boosting can outperform standard methods on the horizon of two and 

more months in forecasting Russian CPI. However, he does not choose optimal 

hyperparameters, considering the predetermined number of estimators. We consider data 

vintages and illustrate the impact of the data used on ML models with optimal architectures. 

Taking into account, that the results from the other countries are inconclusive with respect 

to the forecasting abilities of these models, our research, along with its main goal, fills this 

gap by analysing the performance of ML models in application to the Russian CPI. 
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3. Experiments and data 

In our key estimation experiment we use vintages of official data releases, described 

in detail in Ponomarenko et al. (2021). The data cover the period from January 2001 to 

July 2019 and consist of timeseries of macroeconomic variables for each release date, 

including all revisions. At each point in time, the forecast is made on the basis of the latest 

(not revised) data. The data include 27 time series on economic activity, interest rates, 

price indexes, international trade and others. For most of the variables the vintages of data 

are used: timeseries at each date, as they were initially published by the Federal statistical 

service. Table A1 in Appendix provides an overview of series included in the dataset.4 For 

experiments with not seasonally adjusted data we include months dummies. 

We consider the forecasts for four datasets in order to define the impact of main data 

characteristics. In the first experiment we estimate models on the vintages of not seasonally 

adjusted timeseries, taking into account the timing of the data releases (they are presented 

in Table A1). In each experiment we assume, that we construct our forecasts at the 

beginning of each month, when the data on vintages for two months ago are released. By 

this moment the CPI data and most of the financial variables for the previous month are 

already released (Figure 1). Therefore, at the moment of forecast we have part of the data 

for the previous month (𝑡 − 1 lag) and the rest of the data with two months delay (𝑡 − 2 lag). 

In order to reconstruct properly the real-time forecasting procedure this difference in the 

data for the latest available dates should be taken into account. 

Figure 1. Example of the timeline of data releases 

                                                 
4 Data sources are Federal State Statistical Service, Central Bank of Russia, EIA, Roskazna. 

t January February March April 

January vintages, some other variables 

The rest of the variables 

t-1 

t-2 CPI forecast for March 
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In the second experiment we include timeseries without the regard to the data availability 

at the moment of forecast: all variables are taken with one month lag. In the third 

experiment we estimate models on the revised data and define, how the use of data 

vintages affects the forecasting performance. In the last experiment the forecasts are 

based on seasonally adjusted data without vintages and not taking into account the release 

dates.5 We advocate for the forecasting of not seasonally adjusted CPI, first, because it is 

the commonly recognized indicator, as opposed to the seasonally adjusted data, which is 

the result of the adjustment procedure, which may differ from one research to the other. 

Second, the original CPI values are not revised, while in the case of seasonal adjustment 

historical values are revised each time, which may alter the estimations in the unknown 

manner. The last experiment illustrates the joint effect of all three inaccuracies. Table 1 

provides an overview of the experiments with the references to corresponding subsections. 

Table 1. Different characteristics of the experiments 

Experiment Starting lags Vintages Seasonality 

1 𝑡 − 1/𝑡 − 2 vintages NSA 

2 𝑡 − 1 vintages NSA 

3 𝑡 − 1 regular NSA 

4 𝑡 − 1 regular SA 

Note: yellow – subsection 5.2, blue – subsection 5.3, green – subsection 5.4. 

4. Models and estimation procedure 

4.1. Cross-validation and estimation procedure 

In order to choose the optimal model architecture, we apply the cross-validation 

procedure. We split the dataset in train and test subsets: train set includes observations 

up to December of 2012, following observations are included in the test set. On the train 

set we apply cross-validation with an expanding window.6 Starting from a minimum size 

window of 48 observations we train each model and test it on the next observation from 

                                                 
5 The seasonal adjustment was conducted in Demetra program with tramoseats method and rsa3 specification. 
6 For the first experiments we have compared the results for both, expanding and rolling window. RMSE levels 
were lower in the case of expanding window for all models and both experiments. 
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the train set.7 We consequently add next observation to the training data and re-estimate 

the model. We evaluate the out-of-sample model performance on the test set. 

In order to define the optimal architectures of the models, we use Bayesian 

optimization instead of the grid search. The parameters are chosen so to minimize RMSE 

on the training set. This procedure allows us to decrease significantly the estimation time 

(roughly six times faster). Moreover, preliminary results, based on the cross-validation with 

grid-search, show that Bayesian optimization not only is a faster joint optimization tool, but 

allows us to define more optimal in terms of out-of-sample RMSE parameter combinations 

due to the search on continuous intervals instead of fixed combinations. For details on 

Bayesian optimization see Shahriari et al. (2015). 

Each of four models (linear regression, random forest, gradient boosting, and Bayesian 

neural network) are applied to forecast Russian CPI for one, three and six months in 

advance. For the last two horizons we predict the accumulated inflation (CPI for three 

months and for six months in advance). 

We estimate each model for each forecasting horizon on the dataset with one, three 

or six lags. This brings the total number of estimations for each experiment to 36. Overall, 

144 estimations were made. Next subsections briefly describe the estimated models. 

4.2. Regression with regularization 

As a linear model we consider a regression with regularization (elastic net), which is 

advised, when features are correlated with each other (Friedman et al., 2010). This model 

combines ridge regularization penalty and Lasso penalty. Via cross-validation we choose 

the optimal type of regularization as well as other optimization parameters. 

Formally it is defined as follows: 

min
𝑤

1

2𝑁
(‖𝑋𝑤 − 𝑦‖2

2 + 𝛼𝜌‖𝑤‖𝑙1
+

𝜌(1 − 𝛼)

2
‖𝑤‖𝑙2

2 ), (1) 

where 𝑦 is a target variable, 𝑋 is a vector of predictors, 𝛽 is vector of coefficients and 𝑁 is 

the number of observations. 

                                                 
7 The size of minimum window was chosen experimentally. 
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4.3. Random forest 

Random forest is an ensemble model proposed by Breiman (2001).8 The algorithm 

of random forest is based on decision trees. Each tree is a graph model, which consists of 

a set of rules on explanatory variables to obtain the target variable. This model has a tree 

structure with nodes as decision points. The split occurs according to a certain criterion on 

one of the explanatory variables, while terminal nodes (leaves) contain the value of the 

target variable. The decision tree is built in a stepwise manner: first, the sample is split into 

two subsamples according to the specified criterion, then each of subsamples is 

consequently split further, until a certain stop criterion is not reached.9 

The random forest model can be expressed as follows. Suppose we have 𝑁 

observations (𝑥𝑖, 𝑦𝑖) for 𝑖 = 1,2, … , 𝑁 with 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝) and 𝑀 regions 𝑅1, 𝑅2, … , 𝑅𝑀. 

The response is modeled as a constant 𝑐𝑚 in each region: 

𝑓(𝑥) = ∑ 𝑐𝑚𝐼(𝑥 ∈ 𝑅𝑚)

𝑀

𝑚=1

. (2) 

We consider a splitting variable j and split point s and define the pair of half-planes: 

𝑅1(𝑗, 𝑠) = {𝑋|𝑋𝑗 ≤ 𝑠} and 𝑅2(𝑗, 𝑠) = {𝑋|𝑋𝑗 > 𝑠}. 

Then the splitting variable j and the split point s are defined via minimization problem 

with the chosen minimization criterion. After the best split is defined, the data are divided 

accordingly and the splitting process is repeated for these two regions. The procedure is 

repeated on all of the resulting regions. 

Via cross-validation we choose the architecture, which ensures the best forecasting 

performance of the models. Considered parameters are presented in Table A2 in Appendix. 

4.4. Gradient boosting 

Gradient boosting is another ML algorithm based on the combination of predictive 

models, decision trees in our case, so to minimize the loss function.10 In this form it was 

proposed by Friedman (2001). Gradient boosting can be used both for classification and 

                                                 
8 For the estimation we use scikit-learn Python package. 
9 Algorithm is presented in detail in Friedman et al. (2009), p. 308. 
10 In the baseline case it is a least squares regression. 
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regression, in our case the problem belongs to the second type. Boosting allows to identify 

outliers and to exclude them from the training set. However, it is known to have a tendency 

to overfit, while the stepwise approach of this algorithm can lead to a non-optimal set of weak 

learners. That is why it is highly important to choose optimally the combination of the number 

of estimators and learning rate, which can help to avoid overfitting. 

Analytically gradient boosting is expressed as an additive sum of simpler models:11 

𝐹(𝑥)  = ∑ 𝛾𝑚ℎ𝑚(𝑥),

𝑀

𝑚=1

 (3) 

where ℎ𝑚(𝑥) are decision trees, and 𝛾𝑚(𝑥) is a step length. 

Gradient boosting is built in a stepwise manner in the following way: 

𝐹𝑚(𝑥)  = 𝐹𝑚−1(𝑥) +  𝛾𝑚ℎ𝑚(𝑥). (4) 

On each step the decision tree ℎ𝑚(𝑥) is chosen optimally from the minimization of the loss 

function L with a given 𝐹𝑚−1 and 𝐹𝑚−1(𝑥𝑖): 

ℎ𝑚(𝑥) =  argmin
ℎ,𝛽

∑ 𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) +  𝛽ℎ(𝑥𝑖))

𝑖=1

. (5) 

The minimization problem is approximately solved via fitting steepest descent directions 

(negative gradient of the loss function evaluated at the current model 𝐹𝑚−1) by new weak 

learner. The step length 𝛾𝑚(𝑥) is chosen according to the equation (6): 

𝛾𝑚(𝑥) =  argmin
ℎ,𝛽

∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) − γℎ𝑚(𝑥))

𝑖=1

. (6) 

When defining the optimal architecture, we consider different model characteristics, 

including the specification of loss function, maximum depth of a tree and the number of 

trees. The complete set of hyperparameters is presented in Table A3 in Appendix. 

4.5. Bayesian neural networks 

We consider a sparse Bayesian neural network model described in Khabibullin, 

Seleznev (2020). 12  The model consists of two hidden layers with 30 and 10 nodes. 

Analytically the model can be presented as follows: 

                                                 
11 For the estimation we use scikit-learn Python package. 
12 The mean-field approximation was used. 
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ℎ1,𝑡 =  𝑓(𝑊1𝑥𝑡 + 𝑏1), 
(7) 

ℎ2,𝑡 =  𝑓(𝑊2ℎ1,𝑡 + 𝑏2), 
(8) 

𝑦𝑡 =  𝑊3ℎ2,𝑡 + 𝑏𝑦,𝑡 + ε𝑡, 
(9) 

where 𝑥𝑡   are input data, 𝑊𝑖 are weights on the layers 𝑖 = 1, 2 and output layer, 𝑏𝑖   and 𝑏𝑦  

are bias, 𝑓(·) is an activation function, ℎ𝑖  is the output of the hidden layer 𝑖, 𝑦𝑡   is the output 

of the neural network at time 𝑡  and ε𝑡  is an error term. We consider two model 

specifications: Normal distribution of the error term and Tanh activation function and 

tStudent distribution with ReLu activation function.13 

5. Results 

We estimate elastic net, random forest, gradient boosting and Bayesian neural 

network on four different datasets. For each dataset we construct forecasts for one, three 

and six months in advance. Along with the optimal model architectures we consider the 

different numbers of lags for each horizon. In the next subsection we provide the results 

for the benchmark experiment (experiment 1), conducted on the vintages of not seasonally 

adjusted time series, where the release dates are taken into account. In the following 

subsections it is compared to the results of the experiments. In the second subsection the 

role of release timing is studied (experiment 1 and 2, ‘starting lags’ in Table 1). Next, we 

study, how the estimation with the vintages can affect model performance (experiment 2 

and 3, ‘vintages’ category). In the last subsection we show, how the estimates are affected 

by the use of revised and seasonally adjusted data (experiment 3 and 4, ‘seasonality’). 

5.1. Benchmark experiment 

We start by providing the results for a set of considered models, estimated on the data 

vintages of not seasonally adjusted data. We also take into account the release dates of 

                                                 
13 Initially for the first experiment all four the combinations of model parameters were considered. These two 
combinations were chosen as they allow to achieve the lower RMSE level on cross-validation. 
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timeseries: the official data are released with a delay and different lags. In our case, the 

publications of vintages have a one-month delay comparing to the financial variables and 

the CPI, which are not revised. In order to replicate a real-time forecasting experiment, we 

take these publication lags into account and include lagged variables starting in different 

point in time: exchange rates, oil price and other financial variables are included in the 

dataset starting from 𝑡 − 1 (previous month), for vintages data first observations correspond 

to two months lag (𝑡 − 2). The details on the data and the delay of first observations are 

provided in Table A1 in Appendix. In the cases of three and six months lags we include the 

equal number of lags starting from 𝑡 − 1 or 𝑡 − 2 for corresponding series. 

Table 2 provides RMSEs, estimated on vintages of not seasonally adjusted timeseries, 

when the release dates are taken into account (experiment 1 in Table 1). RMSE levels on 

cross-validation and test for all experiments are provided in Appendix (Tables A7-A10). The 

results are provided for combination of hyperparameters, which allows to achieve the lowest 

RMSEs for each forecasting horizon and number of lags (Tables A4-A6, Appendix). 

Table 2. The out-of-sample RMSE levels for different models 

lags Elastic Net Random 
Forest 

Gradient 
Boosting 

Neural 
network 

AR 

1 month 

1 0,480 0,368 0,356 0,409 0,404 

3 0,403 0,373 0,382 0,431 0,427 

6 0,380 0,389 0,396 0,400 0,392 

3 months 

1 0,756 0,826 0,820 0,705 1,414 

3 0,760 0,883 0,759 0,728 1,393 

6 0,789 0,895 0,737 0,860 1,390 

6 months 

1 0,758 0,963 0,789 0,687 2,693 

3 0,643 0,932 0,716 0,752 2,681 

6 0,758 0,986 0,842 0,876 2,664 

Note: AR model was estimated with seasonal dummies for proper model comparison. 
The lowest RMSE levels for each forecasting horizon are marked with grey. 

The results suggest that forecasts on the basis of the gradient boosting model have 

lower out-of-sample RMSE in the forecasting for one month in advance, random forest 
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forecast is the second best, with both models performing better than AR.14 For three months 

neural network forecast has the lowest RMSE, followed by elastic net model. For six month 

in advance elastic net has the lowest error. In forecasting for three and six months all ML 

models outperform the AR benchmark, which predicts poorly on these horizons. 

Higher AR errors on these horizons are explained by its univariate nature: other 

models include different macroeconomic variables, informative in predicting future economic 

developments. Let us consider an elastic net, as more interpretable one among ML models, 

and a forecasting period of three months with one lag. Additional estimations suggest, that 

elastic net trained on the whole train set, with optimal hyperparameters “picks” non zero 

coefficients for variables such as export and import, exchange rate, oil price, production of 

eggs and meat as well as retail of nonfood goods and others while seasonal dummies have 

zero or close to zero coefficients. Additional variables capture some seasonal fluctuations 

and mitigate the autoregressive spikes in CPI if needed. In the case of AR with seasonal 

dummies this cherry picking is impossible, which makes AR forecasts excessively volatile, 

when longer horizons are considered due to the change in the seasonal fluctuations of the 

CPI on the test set with comparison to the train set (see Figure 1 in Appendix). 

5.2. The role of release timing 

Next, we consider, how taking into account the release timing affects the results. We 

examine two experiments with not seasonally adjusted data vintages. In the first one we 

form dataset with the regard to the time, when the latest value of an indicator is released 

( 𝑡 − 1/ 𝑡 − 2). In the second experiment we treat all timeseries as available and include them 

in the dataset with 𝑡 − 1 lag. The results for these experiments are provided in Table 3. 

Unsurprisingly, for most of the cases an assumption, that the most recent data are 

available, leads to the lower forecasting errors (for 10,5%, 8% and 1,7% on average for one, 

three and six months in advance).15 The exceptions are gradient boosting and random forest 

forecasts for one month in advance and elastic net forecast for six months in advance. Since 

                                                 
14 The models outperform RW benchmark as well, the results of which are omitted in the table with the aim of 

comparability. For 1, 3 and 6 months in advance the RMSE for RW is 0.41, 1.76 and 3.81, correspondingly. 
15 Estimations were made for each model with the optimal number of lags. The change is calculated as the 
difference between 2nd and 1st experiment’s RMSEs relative to the latter one. 
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usually linear models are used for macroeconomic forecasting the results for elastic net can 

be more representative: for this model an inclusion of all “available” data can lead to an 

underestimation of the real forecasting RMSE from 5,5% to 10,6% for one and three months 

in advance, correspondingly. 

Table 3. Comparison of RMSEs of models estimated on data with the same and 
different lags 

  Elastic Net Random Forest Gradient Boosting Neural network 

lags 𝑡 − 1 𝑡 − 1/ 𝑡 − 2 𝑡 − 1 𝑡 − 1/ 𝑡 − 2 𝑡 − 1  𝑡 − 1/ 𝑡 − 2 𝑡 − 1 𝑡 − 1/ 𝑡 − 2 

1 month 

1 0,359 0,480 0,393 0,368 0,378 0,356 0,338 0,409 

3 0,362 0,403 0,446 0,373 0,404 0,382 0,349 0,431 

6 0,447 0,380 0,428 0,389 0,375 0,396 0,411 0,400 

3 months 

1 0,676 0,756 0,772 0,826 0,710 0,820 0,626 0,705 

3 0,697 0,760 0,816 0,883 0,789 0,759 0,787 0,728 

6 0,720 0,789 0,814 0,895 0,790 0,737 0,765 0,860 

6 months 

1 0,722 0,758 0,914 0,963 0,735 0,789 0,685 0,687 

3 0,701 0,643 0,903 0,932 0,716 0,716 0,698 0,752 

6 0,743 0,758 0,927 0,986 0,809 0,842 0,916 0,876 

Note: The lowest RMSE levels for each forecasting horizon and number of lags are marked with grey. 
The lowest RMSE among two experiments for each model is marked with bold. 

5.3. The role of data vintages 

We can define the role of data vintages in macroeconomic forecasting by comparing 

the estimates based on not seasonally adjusted data vintages and model results estimated 

on not seasonally adjusted data with final releases (experiments 2 and 3 in Table 1). The 

RMSE levels on test sets for four models are presented in Table 4. 

For one and three months in advance gradient boosting and random forest provide 

lower errors, when vintages are not used. For elastic net and neural network, on the contrary, 

for these forecasting horizons the use of data vintages allows to achieve lower errors. For 

longer horizon of six months the neural network estimated on the data without vintages 

provides the lowest RMSE with the significant difference comparing to its results on vintages 

data. Elastic net and random forest also provide lower errors, when the vintages data are 

not used, yet the difference between errors is lower and insignificant in the latter case. For 

gradient boosting the use of vintage data leads to lower RMSE. 
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Table 4. Comparison of RMSEs of models estimated with and without data vintages 

 Elastic Net Random Forest Gradient Boosting Neural network 

lags vintages no vintages vintages no vintages vintages no vintages vintages no vintages 

1 month 

1 0,359 0,369 0,393 0,373 0,378 0,334 0,338 0,348 

3 0,362 0,399 0,446 0,386 0,404 0,366 0,349 0,402 

6 0,447 0,392 0,428 0,399 0,375 0,392 0,411 0,414 

3 months 

1 0,676 0,697 0,772 0,732 0,710 0,677 0,626 0,615 

3 0,697 0,711 0,816 0,824 0,789 0,803 0,787 0,766 

6 0,720 0,751 0,814 0,881 0,790 0,848 0,765 0,822 

6 months 

1 0,722 0,767 0,914 0,901 0,735 0,767 0,685 0,669 

3 0,701 0,690 0,903 0,940 0,716 0,731 0,698 0,657 

6 0,743 0,690 0,927 0,972 0,809 0,781 0,916 0,889 

Note: The lowest RMSE levels for each forecasting horizon and number of lags are marked with grey. 

The lowest RMSE among two experiments for each model is marked with bold. 

Overall, the results suggest, that the sensitivity to the use of data vintages varies 

among the models and the considered forecasting horizons. In these two experiments, if the 

choice of a model with the lowest errors has to be made, neural network has the lowest or 

comparable out-of-sample errors in comparison to the other models. For the forecasts for 

one month in advance the use of vintages data leads to the lower error. For three and six 

months, on the contrary, the use of data vintages only increases the error. 

Overall, in 19 cases out of 36 (for three forecasting horizons, three lags for each and 

four models) the use of data vintages leads to the lower RMSE. However, when the model 

with the optimal number of lags is considered in 8 out of 12 cases (four models and three 

forecasting horizons) the forecasts on the revised data provide lower RMSEs. Anyway, 

usually forecaster is not faced with the choice what data to use. In real time only preliminary 

releases and data published with delay are available. The comparison of these two 

estimation experiments shows, that in real-time forecasting RMSE levels can differ 

significantly from the estimates, obtained on the revised data. Depending on the model, 

number of lags used and forecasting horizon this impact may vary. However, the results 

suggest, that model performance on all available data is not representative in real-time 

estimations and should be considered with caution. 
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5.4. The role of seasonal adjustment 

Next, we consider two experiments on data, which incorporate all revisions (no 

vintages). In the one experiment all variables with seasonal fluctuations are seasonally 

adjusted (experiment 4 in Table 1), while in the second one the variables are not altered 

and seasonal dummies are added in the dataset (experiment 3 in Table 1). 16  This 

comparison is aimed to show, how forecasting results depend on the use of unobservable 

data transformations and whether it can alter the forecasting error and the choice of the 

model. Table 5 summarizes the results. 

In almost all cases the use of seasonally adjusted timeseries leads to the lower 

forecasting errors. The difference in the value errors varies from 12,1% for one month in 

advance to 8,5% and 9,3% for three and six months, correspondingly. The results suggest, 

that the use of seasonal adjustment in the CPI forecasting can lead to a significant 

underestimation of forecast errors. 

Table 5. RMSEs estimated on seasonally adjusted and not seasonally adjusted data 

  Elastic Net Random Forest Gradient Boosting Neural network 

lags sa nsa sa nsa sa nsa sa nsa 

1 month 

1 0,348 0,369 0,326 0,373 0,323 0,334 0,304 0,348 

3 0,295 0,399 0,346 0,386 0,344 0,366 0,347 0,402 

6 0,377 0,392 0,353 0,399 0,344 0,392 0,391 0,414 

3 months 

1 0,622 0,697 0,686 0,732 0,700 0,677 0,625 0,615 

3 0,675 0,711 0,715 0,824 0,682 0,803 0,652 0,766 

6 0,664 0,751 0,738 0,881 0,732 0,848 0,716 0,822 

6 months 

1 0,666 0,767 0,843 0,901 0,671 0,767 0,837 0,669 

3 0,599 0,690 0,846 0,940 0,791 0,731 0,804 0,657 

6 0,658 0,690 0,880 0,972 0,827 0,781 0,921 0,889 

Note: The lowest RMSE levels for each forecasting horizon and number of lags are marked with grey. 
The lowest RMSE among two experiments for each model is marked with bold. 

 

                                                 
16 The seasonal adjustment is conducted in Demetra program with tramoseats method and rsa3 specification. 
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5.5. Joint effect of three discrepancies 

Here we compare two ‘corner’ experiments: the benchmark one, when the estimates 

are based on vintages of not seasonally adjusted data and release timing is taken into 

account (experiment 1), and the last one, estimated on series with final revisions and 

seasonally adjusted data, treating all variables as available. Table 6 summarizes the results. 

Table 6. Comparison of RMSEs of models the first and fourth experiment 

  Elastic Net Random Forest Gradient Boosting Neural network 

lags exp. 4 exp.1 exp. 4 exp.1 exp. 4 exp.1 exp. 4 exp.1 

1 month 

1 0,348 0,480 0,326 0,368 0,323 0,356 0,304 0,409 

3 0,295 0,403 0,346 0,373 0,344 0,382 0,347 0,431 

6 0,377 0,380 0,353 0,389 0,344 0,396 0,391 0,400 

3 months 

1 0,622 0,756 0,686 0,826 0,700 0,820 0,625 0,705 

3 0,675 0,760 0,715 0,883 0,682 0,759 0,652 0,728 

6 0,664 0,789 0,738 0,895 0,732 0,737 0,716 0,860 

6 months 

1 0,666 0,758 0,843 0,963 0,671 0,789 0,837 0,687 

3 0,599 0,643 0,846 0,932 0,791 0,716 0,804 0,752 

6 0,658 0,758 0,880 0,986 0,827 0,842 0,921 0,876 

Note: Exp. 1 does not include vintages or take into account of release timing, with seasonal adjustment; 
Exp.4 is based on vintages, in it we take into account release timing and use not seasonally adjusted data. 
The lowest RMSE levels for each forecasting horizon and number of lags are marked with grey. The lowest 

RMSE among two experiments for each model is marked with bold. 

We see, that for all four models experiment 4, which incorporates all inaccuracies, has 

a lower forecasting error than the 1 experiment (32 out of 36 cases), which reconstructs the 

real time forecasting procedure, how it would have been at each point in the past. 

If we consider the forecasts with the optimal for each horizon number of lags, the 

evidence is even more conclusive (Figure 2). The RMSE gap of the models within two 

experiments varies depending on the model and the forecasting horizon. On average the 

difference between the experiments is 16,8% for one month in advance, 13,4% for the three 

months and 7,6% for forecasts for six months. Moreover, the choice of the optimal model 

for two out of three horizons changes depending on the experiment, so these results may 

also affect the comparison of models, based on their performance. Therefore, neglecting 

these three inaccuracies in the actual real-time forecasting can lead to a significant 

underestimation of the forecasting error and the incorrect choice of the forecasting model. 
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Figure 2. Comparison of the RMSEs of the models with optimal number of lags for 
first and fourth experiment for different forecasting horizons 
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Conclusion 

We construct four forecasting experiments in order to define, how different 

inaccuracies in pseudo real-time forecasting affect the performance of several machine 

learning models. We analyze these effects in the case of forecasting Russian CPI. As a 

benchmark for the comparison, we use the case, where the forecasts are based on the 

data with three main characteristics. First, we use data vintages, which is the first case of 

their use in the forecasting excises on Russian data. Second, in our real-time experiment 

we take into account, when each variable is released, fix at what part of the month we make 

our forecasts and include in the estimation only available data with the corresponding 

release delay. Finally, we do not apply any seasonal adjustment procedures, and include 

seasonal dummies in the dataset along with timeseries. 

Main results come from the comparison of the benchmark experiment with others. 

First, we show, that the neglect of the release timing of series lead to the significant 

underestimation of the forecasting error. Second experiment provides inconclusive 

evidence concerning an impact of the use of vintages. For most of the models the 

estimation on the revised data leads to the lower errors. We show, that for some models 

the use of ordinary data can lead to an artificially low forecasting error. In reality, all we 

have at each point in time are preliminary data before any revisions occur. With the help of 

the last experiment we show, that the use of seasonally adjusted data lowers artificially the 

forecasting error. This means, that when a particular model is considered, lower forecasting 

errors can be misleading and partly be the result of the use of seasonally adjusted data. 

Finally, we compare the results of the benchmark experiment with the results of the 

estimations, conducted on revised time series (not vintages) of seasonally adjusted data 

and with no account for the difference in release dates. Overall effect of these three 

discrepancies is 16,8% for the best number of lags for each model for one month in 

advance (13,4% and 7,6% for three and six months, correspondingly). Therefore, these 

aspects could lead to a significant underestimation of forecasting error in actual real-time 

forecasting and should be taken into account in the macroeconomic forecasting. 
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Within the benchmark experiment we also compare the performance of ML models 

and show, that these models have a great potential in forecasting macroeconomic 

timeseries. For forecasting for one month in advance gradient boosting and neural network 

have the comparable RMSE, for three months in advance neural network has the best 

performance, for six months elastic net provides lower error. In all three cases AR forecasts 

are outperformed by these ML models. 
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6. Appendix 

Tables 

Table A1. Variables and data sources17 

Name of series Type Source Period 

Consumer price index regular FSSS t-1 

Industrial production vintages FSSS t-2 

Unemployment rate vintages FSSS t-2 

Real wage vintages FSSS t-2 

Real agricultural production vintages FSSS t-2 

Eggs production vintages FSSS t-2 

Meat production vintages FSSS t-2 

Milk production vintages FSSS t-2 

Freight vintages FSSS t-2 

Railway freight vintages FSSS t-2 

Commercial freight vintages FSSS t-2 

Real retail output vintages FSSS t-2 

Food retail vintages FSSS t-2 

Nonfood retail vintages FSSS t-2 

Services vintages FSSS t-2 

Public catering vintages FSSS t-2 

Construction vintages FSSS t-2 

Export of goods vintages RSSS t-2 

Import of goods vintages RSSS t-2 

Nominal exchange rate regular CBR t-1 

Real effective exchange rate regular BIS t-1 

Interbank interest rate regular CBR t-1 

Deposit interest rate regular CBR t-2 

International reserves regular CBR t-1 

Monetary aggregate M2 (real) regular CBR t-1 

Total government deficit regular Roskazna t-2 

Crude oil (Brent) price regular EIA t-1 

 

                                                 
17 FSSS – Federal State Statistical Service, CBR – Central Bank of Russia, BIS – Bank for international 

settlements, EIA – Energy Information Administration. 
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Table A2. Values of the parameters used in the estimation of random forest 

Hyperparameters Values 

criterion Mse, mae 

maximum number of features Auto,log2, sqrt 

number of estimators (5, 300) 

maximum depth of a tree None, (1, 14) 

min. number of samples required to split a node (2, 10) 

Note: default values are criterion – mse, number of estimators = 100, maximum depth – None, 

maximum number of features – auto, maximum depth of a tree  – None, min. samples split = 2. 

Table A3. Values of the parameters used in the estimation of gradient boosting 

Hyperparameters Values 

loss function least squares least absolute deviation Huber function 

criterion Friedman mse mse mae 

learning rate (0.001 0.2) 

number of estimators (10 400) 

maximum depth (2 10) 

subsample (0.2 1.0) 

Note: default values are loss function - least squares, criterion - Friedman mse, learning rate = 0.1, 
number of estimators = 100, maximum depth = 3, subsample = 1.0. 
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Table A4. Optimal parameters of random forest chosen on cross-validation  

hyperparameters one month three months six months 

first experiment 

criterion mae mae mae 

maximum number of features auto auto auto 

number of estimators 21 30 33 

maximum depth of a tree 8 10 14 

min. samples split 8 2 2 

max. leaf nodes 47 50 50 

number of lags 1 1 3 

second experiment 

criterion mse mse mse 

maximum number of features auto auto auto 

number of estimators 10 39 34 

maximum depth of a tree 9 14 14 

min. samples split 4 2 4 

max. leaf nodes 30 None None 

number of lags 1 1 3 

third experiment 

criterion mae mae mae 

maximum number of features auto auto auto 

number of estimators 39 244 204 

maximum depth of a tree 10 13 14 

min. samples split 2 5 6 

max. leaf nodes 34 45 25 

number of lags 1 1 1 

fourth experiment 

criterion mae mse mse 

maximum number of features auto auto auto 

number of estimators 300 194 92 

maximum depth of a tree 12 7 14 

min. samples split 7 3 2 

max. leaf nodes 47 41 43 

number of lags 1 1 1 
Note: default values are criterion – mse, number of estimators = 100, maximum depth – None, 

maximum number of features – auto, maximum depth of a tree  – None, min. samples split = 2. 

  



FORECASTING RUSSIAN CPI WITH DATA VINTAGES AND MACHINE LEARNING TECHNIQUES  APRIL 2021 

 

 

 

33 

Table A5. Optimal parameters of gradient boosting chosen on cross-validation 

hyperparameters one month three months six months 

first experiment 

loss function ls ls ls 

criterion mse friedman_mse mse 

learning rate 0,041 0,223 0,145 

number of estimators 323 348 314 

maximum depth 2 2 2 

subsample 0,386 0,768 0,995 

number of lags 1 6 3 

second experiment 

loss function ls ls huber 

criterion mse mse mae 

learning rate 0,068 0,181 0,103 

number of estimators 399 163 344 

maximum depth 2 2 2 

subsample 0,552 0,889 0,792 

number of lags 6 1 3 

third experiment 

loss function ls ls huber 

criterion mse friedman_mse mse 

learning rate 0,086 0,171 0,205 

number of estimators 128 334 211 

maximum depth 3 2 2 

subsample 0,620 0,619 0,982 

number of lags 1 1 3 

fourth experiment 

loss function huber ls ls 

criterion friedman_mse friedman_mse mse 

learning rate 0,050 0,4 0,4 

number of estimators 238 10 28 

maximum depth 9 2 2 

subsample 0,733 1 1 

number of lags 1 3 1 

Note: default values are loss function - least squares, criterion - Friedman mse, learning 
rate = 0.1, number of estimators = 100, maximum depth = 3, subsample = 1.0. 
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Table A6. Optimal parameters of elastic net chosen on cross-validation 

hyperparameters one month three months six months 

first experiment 

alpha 0,005 0,108 0,044 

l1_ratio 0,547 0,907 0,999 

fit_intercept TRUE TRUE TRUE 

normalize TRUE FALSE FALSE 

max_iter 268 237 1821 

selection random cyclic cyclic 

number of lags 6 1 3 

second experiment 

alpha 0,003 0,061 0,067 

l1_ratio 0,138 0,987 1,000 

fit_intercept TRUE TRUE TRUE 

normalize TRUE FALSE FALSE 

max_iter 1280 1669 463 

selection random cyclic cyclic 

number of lags 1 1 3 

third experiment 

alpha 0,017 0,201 0,007 

l1_ratio 0,653 0,965 1,000 

fit_intercept TRUE TRUE TRUE 

normalize FALSE FALSE TRUE 

max_iter 568 1447 1261 

selection random random random 

number of lags 1 1 6 

fourth experiment 

alpha 0,022 0,057 0,069 

l1_ratio 0,836 0,923 0,922 

fit_intercept TRUE TRUE TRUE 

normalize FALSE FALSE FALSE 

max_iter 488 1009 1239 

selection cyclic random random 

number of lags 3 1 3 

Note: default values are alpha = 1 , l1_ration = 0,5, fit_itercept = True, normalize = False, 
max_iter = 1000, selection = ‘cyclic’. 
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Table A7. RMSE levels on cross-validation and test in the first experiment 

Lags Gradient Boosting Random Forest Elastic Net Neural network 

  CV test CV test CV test CV test 

1 month 

1 0,382 0,356 0,371 0,368 0,377 0,480 0,421 0,409 

3 0,400 0,382 0,378 0,373 0,387 0,403 0,439 0,431 

6 0,394 0,396 0,405 0,389 0,387 0,380 0,447 0,400 

3 months 

1 0,598 0,820 0,644 0,826 0,631 0,756 0,694 0,705 

3 0,648 0,759 0,715 0,883 0,673 0,760 0,739 0,728 

6 0,646 0,737 0,717 0,895 0,598 0,789 0,891 0,860 

6 months 

1 0,837 0,789 0,922 0,963 0,649 0,758 0,769 0,687 

3 0,853 0,716 0,939 0,932 0,632 0,643 0,756 0,752 

6 0,805 0,842 0,949 0,986 0,586 0,758 0,724 0,876 

Table A8. RMSE levels on cross-validation and test in the second experiment 

Lags Gradient Boosting Random Forest Elastic Net Neural network 

  CV test CV test CV test CV test 

1 month 

1 0,360 0,378 0,379 0,393 0,363 0,359 0,363 0,338 

3 0,393 0,404 0,387 0,446 0,397 0,362 0,425 0,349 

6 0,385 0,375 0,401 0,428 0,370 0,447 0,464 0,411 

3 months 

1 0,566 0,710 0,641 0,772 0,587 0,676 0,672 0,626 

3 0,650 0,789 0,689 0,816 0,632 0,697 0,847 0,787 

6 0,644 0,790 0,700 0,814 0,561 0,720 0,757 0,765 

6 months 

1 0,830 0,735 0,961 0,914 0,646 0,722 0,689 0,685 

3 0,890 0,716 1,031 0,903 0,684 0,701 0,729 0,698 

6 0,839 0,809 1,003 0,927 0,604 0,743 0,712 0,916 
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Table A9. RMSE levels on cross-validation and test in the third experiment 

Lags Gradient Boosting Random Forest Elastic Net Neural network 

  CV test CV test CV test CV test 

1 month 

1 0,348 0,334 0,378 0,373 0,395 0,369 0,378 0,348 

3 0,387 0,366 0,393 0,386 0,387 0,399 0,407 0,402 

6 0,390 0,392 0,396 0,399 0,353 0,392 0,471 0,414 

3 months 

1 0,576 0,677 0,666 0,732 0,592 0,697 0,712 0,615 

3 0,655 0,803 0,697 0,824 0,632 0,711 0,729 0,766 

6 0,629 0,848 0,720 0,881 0,610 0,751 0,731 0,822 

6 months 

1 0,829 0,767 0,929 0,901 0,610 0,767 0,731 0,669 

3 0,877 0,731 0,972 0,940 0,639 0,690 0,743 0,657 

6 0,842 0,781 0,963 0,972 0,590 0,690 0,723 0,889 

 

Table A10. RMSE levels on cross-validation and test in the fourth experiment 

Lags Gradient Boosting Random Forest Elastic Net Neural network 

  CV test CV test CV test CV test 

1 month 

1 0,293 0,323 0,290 0,326 0,314 0,348 0,313 0,304 

3 0,304 0,344 0,302 0,346 0,374 0,295 0,310 0,347 

6 0,300 0,344 0,307 0,353 0,313 0,377 0,349 0,391 

3 months 

1 0,460 0,700 0,458 0,686 0,444 0,622 0,541 0,625 

3 0,480 0,682 0,488 0,715 0,494 0,675 0,561 0,652 

6 0,478 0,732 0,494 0,738 0,505 0,664 0,581 0,716 

6 months 

1 0,596 0,671 0,627 0,843 0,502 0,666 0,513 0,837 

3 0,656 0,791 0,663 0,846 0,512 0,599 0,640 0,804 

6 0,636 0,827 0,692 0,880 0,553 0,658 0,788 0,921 
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Figures 

 

Figure A1. Comparison of AR and elastic net forecasts for three months in advance 
with one lag. 
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