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Abstract 
 

We construct priors for the tempered hierarchical Dirichlet process vector autoregression 
model (tHDP-VAR) that in practice do not lead to explosive forecasting dynamics. 
Additionally, we show that tHDP-VAR and its variational Bayesian approximation with 
heuristics demonstrate competitive or even better forecasting performance on US and 
Russian datasets. 
 
Keywords: Bayesian nonparametrics, forecasting, hierarchical Dirichlet process, infinite 

hidden Markov model. 
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1. Introduction 

Despite the fact that linear Bayesian vector autoregression (BVAR) models show 

relatively good forecasting performance (De Mol, Giannone & Reichlin, 2008; Giannone, 

Lenza & Primiceri, 2015), the existence of changes in the structure of the economy (a great 

recession, ZLB, monetary and fiscal policy changes in emerging markets, etc.) allows us to 

believe in non-linearity (time-varying parameters) in the data-generating process. Taking into 

account this time variation for BVARs is one of the most promising ways to increase the 

forecasting properties of these models. 

In general, (B)VAR models with time-varying parameters can be written in the following 

form1: 

𝑦𝑡 = 𝑏𝑡 + 𝐴1,𝑡𝑦𝑡−1 +⋯+ 𝐴𝑝,𝑡𝑦𝑡−𝑝 + 𝑒𝑡   (1) 

𝑒𝑡~𝑁(0; 𝛴𝑡)     (2) 

where 𝑦𝑡 is an 𝑁 × 1 vector of endogenous variables, 𝑒𝑡 is an 𝑁 × 1 vector of shocks, and 

𝑏𝑡(𝑁 × 1), 𝐴1,𝑡(𝑁 × 𝑁),… , 𝐴𝑝,𝑡(𝑁 × 𝑁)  and 𝛴𝑡(𝑁 × 𝑁)  are time-varying parameters of the 

model. The process for the evolution of the parameters completes the model.  

There is a vast amount of literature that incorporates different evolutions of the 

parameters in VAR models. This literature includes models with random walk coefficients 

(Cogley & Sargent, 2005; Primiceri, 2005), Markov-switching (MS) models (Sims, Waggoner 

& Zha, 2008; Bognanni & Herbst, 2017), threshold (Galvao & Marcellino, 2010) and latent 

threshold models (Nakajima & West, 2013), smooth transition models (Auerbach & 

Gorodnichenko, 2013), nonparametric models (Kapetanios, Marcellino & Venditti, 2016), and 

score-driven models (Gorgi, Koopman & Schaumburg, 2017), among others. 

This paper concentrates on choosing a prior distribution for the Markov-switching VAR 

model with an infinite number of regimes, namely the tempered hierarchical Dirichlet process 

VAR (tHDP-VAR)2, which might be helpful for short- and medium-term forecasting. The 

model with an infinite number of regimes has several advantages. It is not necessary to build 

a set of models with different numbers of regimes and choose between them (or weight 

them). In the tHDP-VAR model this is done automatically. Additionally, the tHDP-VAR model 

allows for the appearance of new regimes in the forecasting horizon, which might be 

especially useful in the case of a conditional forecasting procedure. 

                                                        
1 For simplicity we assume Gaussian errors. 
2 We choose tHDP as a class representative because of its popularity, but any other model with an infinite 
number of regimes might be used. 
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This model originates from the Bayesian nonparametric literature (Ghosh & 

Ramamoorthi, 2003; Hjort, Holmes, Muller & Walker, 2010; Ghosal & Van der Vaart, 2017) 

and is based on the (tempered) hierarchical Dirichlet process (Beal, Ghahramani & 

Rasmussen, 2002; Teh, Jordan, Beal & Blei, 2006; Fox, Sudderth, Jordan & Willsky, 2007), 

which provides an elegant way to introduce an infinite number of switching regimes.  

Bayesian nonparametric models are used for part-of-speech tagging (Van Gael & 

Ghahramani, 2011), topic modelling (Teh, Jordan, Beal & Blei, 2006; Wang, Paisley & Blei, 

2011), speaker diarization (Stephenson & Raphael, 2015), human motion capture 

(Stephenson & Raphael, 2015) and description of visual scenes (Sudderth, Torralba, 

Freeman & Willsky, 2008), among other uses. However, to the best of our knowledge there 

are only a few works that apply a similar methodology for macroeconomic problems. 

Jochmann (2015) models inflation using hierarchical Dirichlet processes, and Song (2014) 

concentrates on real interest rates. Hou (2016) is the closest to our paper. This author 

predicts the dynamics of GDP inflation, GDP growth and the effective federal fund rate in the 

US. Although the specification proposed by Hou (2016) works well for US data, it does not 

guarantee adequate performance on other datasets (for example, on datasets with a larger 

number of series and/or “less stable” data) or longer horizons.  

In this paper, we show that imposing traditional prior distributions for the tHDP-VAR 

model may lead to the occurrence of explosive forecasts. To mitigate this problem, we 

propose a procedure that assumes that the explosive roots of the VAR model are truncated. 

In addition to theoretical considerations, the paper describes a sampling algorithm and 

several heuristics that can be useful for accelerating and stabilizing the algorithm in practice. 

To demonstrate the properties of the algorithm for real data, we compare the predictive 

performance of the model with the VAR model and the BVAR model in the spirit of Giannone, 

Lenza and Primiceri (2015) for US and Russian data. We show that the proposed algorithm 

and a number of heuristics work better than alternative models on these data. 

The rest of the paper is organized as follows: in Section 2 we describe hierarchical 

Dirichlet processes; Markov-switching VAR with an infinite number of regimes is explained 

in Section 3; Sections 4 and 5 are devoted to the prior distributions and the estimation 

algorithm; the applications of algorithms are shown in Section 6; and Section 7 concludes. 
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2. Hierarchical Dirichlet processes 

As its name suggests, one part of the hierarchical Dirichlet process (HDP) is the 

Dirichlet process (DP), so first we have to define the DP. A formal definition can be found in 

Ferguson (1973), but for a better understanding we use the stick-breaking construction 

definition given by Sethuraman (1994). The Dirichlet process with parameters 𝛼 and 𝐺0 , 

𝐷𝑃(𝐺0, 𝛼), defines the distribution on distributions (𝐺~𝐷𝑃(𝐺0, 𝛼)): 

𝐺(𝜃) = ∑ 𝜋𝑘
∞
𝑘=1 𝛿(𝜃 − 𝜃𝑘)     (3) 

where 𝛿 is the Dirac delta function, 𝜃 is the set of parameters of the distribution 𝐺 and 

𝛽𝑘
′~𝐵𝑒𝑡𝑎(1, 𝛼)  𝑘 = 1, 2, …   (4) 

𝜋𝑘 = 𝛽𝑘
′ ∏ (1 − 𝛽𝑙

′)𝑘−1
𝑙=1  𝑘 = 1, 2, …   (5) 

𝜃𝑘~𝐺0(𝜃
𝑘)  𝑘 = 1, 2, …   (6) 

The hierarchical Dirichlet process (Teh, Jordan, Beal & Blei, 2006) defines a set of 

Dirichlet distributions, 𝐺1, … , 𝐺𝑛, with the common base distribution (𝐺0~𝐷𝑃(𝐻, 𝛾)): 

𝐺𝑖~𝐷𝑃(𝐺0, 𝛼)  𝑘 = 1, 2, …   (7) 

𝐺0~𝐷𝑃(𝐻, 𝛾)      (8) 

3. Hierarchical Dirichlet process VAR 
 

The hierarchical Dirichlet process can be used to construct a Markov-switching vector 

autoregression with an infinite number of regimes. The parameters of the model 𝜃𝑡 =

{𝑏𝑡, 𝐴1,𝑡, … , 𝐴𝑝,𝑡, 𝛴𝑡} follow the Markov process, with the probability of transition from state 𝑖 to 

state 𝑗 (𝜋𝑖𝑗) given by the substitution of (4) and (5) into (7) and (8): 

𝛽0𝑗
′ ~𝐵𝑒𝑡𝑎(1, 𝛾)  𝑗 = 1, 2, …   (9) 

𝜋0𝑗 = 𝛽0𝑗
′ ∏ (1 − 𝛽0𝑙

′ )
𝑗−1
𝑙=1  𝑗 = 1, 2, …   (10) 

𝛽𝑖𝑗
′ ~𝐵𝑒𝑡𝑎(𝛼𝜋0𝑗 , 𝛼(1 − ∑ 𝜋0𝑙

𝑗
𝑙=1 )) 𝑖, 𝑗 = 1, 2, …   (11) 

𝜋𝑖𝑗 = 𝛽𝑖𝑗
′ ∏ (1 − 𝛽𝑖𝑙

′ )
𝑗−1
𝑙=1  𝑖, 𝑗 = 1, 2, …   (12) 

Combining equations (1), (2), (9)–(12), and adding the prior distribution, 𝐻, for the 

parameters of each state, we obtain a Markov-switching vector autoregression with an infinite 

number of regimes. We call this model the hierarchical Dirichlet process VAR (HDP-VAR) in 

the spirit of Bayesian nonparametrics. 
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Following Fox, Sudderth, Jordan and Willsky (2007), we introduce persistence of 

states (a high probability of transition to the same state), which is traditionally used in time 

series modelling via DP. Equation (12) in this case is replaced by: 

𝜋𝑖𝑗
′ = 𝛽𝑖𝑗

′ ∏ (1 − 𝛽𝑖𝑙
′ )

𝑗−1
𝑙=1   𝑖, 𝑗 = 1, 2, …  (13) 

𝜋𝑖𝑗 =
𝛼

𝛼+𝜅
𝜋𝑖𝑗
′ +

𝜅

𝛼+𝜅
𝐼(𝑖 = 𝑗)  𝑖, 𝑗 = 1, 2, …  (14) 

where 𝜅 determines the state persistence, and 𝐼(𝑖 = 𝑗) is an indicator that is 1 if 𝑖 = 𝑗 and 0 

otherwise. As can be seen from equation (14), the transition probability is shifted to the 

current state, and the persistence coefficient determines the degree of the shift. It can also 

be noted that for 𝜅 = 0, equations (13) and (14) are equivalent to equation (12), which shows 

that hierarchical Dirichlet processes are a special case of the tempered hierarchical Dirichlet 

process (tHDP). 

 

4. Prior distributions 
 

One should be cautious before applying non-truncated prior distributions for the 

coefficients of the BVAR based model, such as BVAR, MS-VAR or tHDP-VAR.  

We illustrate this with the help of the Bayesian AR(1) model 

𝑦𝑡 = 𝐴1𝑦𝑡−1 + 𝑒𝑡     (15) 

 𝑒𝑡~𝑁(0,1)      (16) 

with Gaussian prior distribution 

𝐴1~𝑁(0,1)      (17) 

Let us assume that there are no observations. It is easy to see from Figure 1 that in 

this case the probability of being outside the bounds of stationarity is nonzero. Hence, it is 

easy to obtain the following result, which is exactly the existence of explosive forecasts:  

𝑙𝑖𝑚
ℎ→∞

(∫𝑦𝑡+ℎ
2 𝑝(𝑦𝑡+ℎ|𝑦𝑡, 𝐴1)𝑝(𝐴1)𝑑𝐴1) = ∞   (18) 

If the prior distribution is replaced with the posterior, then (18) still holds. The 

probability of being outside the bounds of stationarity becomes smaller but remains positive 

(see Figure 1). This usually just leads to a decreased influence of the explosive forecasts for 

a fixed horizon. 
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For the tHDP-VAR model this implies that there are three important sources 3  of 

unrealistic (explosive) forecasts: historically non-observed regimes, regimes with a small 

number of observations, and regimes with unusual data such as crises. The first two sources 

are similar in nature and are the result of the prior dominance. The third source contains large 

jumps in the observed variables that often shift a probability mass toward regions of non-

stationarity. The problem of explosiveness is also relevant for BVAR, but in practice the 

probability of being outside the bounds of stationarity is reduced by the data. Explosiveness 

is therefore not a problem in BVARs for the horizons of interest. Even in those cases for 

which the explosiveness has to be excluded in BVAR, this can easily be done by applying 

simple criteria for bubble roots (Blake & Mumtaz, 20174). 

It is also easy to derive the stability conditions for the Markov-switching model with a 

finite number of regimes. Costa, Fragoso and Marques (2005) show that the stability of this 

class of model is closely related to the spectral radius of the model. So for the MS model, the 

stability of the model can be verified. The same conditions cannot be directly transferred to 

the model with an infinite number of regimes, and we just exclude the explosive roots of the 

coefficients of each regime. This does not ensure the stability of the model, but we find that 

this approach significantly mitigates the problem of explosive forecasts in practice. As will be 

demonstrated later, the forecasts for models with truncated priors lie in reasonable ranges 

and in most cases outperform BVAR forecasts. 

Truncation of priors is done explicitly by multiplying the traditional prior distribution of 

each state by an indicator that the coefficients are not explosive. The Minnesota prior and 

the dummy-initial-observation prior from Giannone, Lenza and Primiceri (2015) are called 

“traditional prior distributions” in this paper. 

The first and second moments of the Minnesota prior distribution5 are: 

  𝐸((𝐴𝑠)𝑖𝑗|𝛴) = {
𝛿𝑖 if 𝑖 = 𝑗 and 𝑠 = 1
0 otherwise

    (19) 

𝑐𝑜𝑣((𝐴𝑠)𝑖𝑗, (𝐴𝑟)ℎ𝑚|𝛴) = {
𝜆2

𝑠2
𝛴𝑖ℎ

𝜓𝑗𝑗/(𝑑−𝑛−1)
if 𝑚 = 𝑗 and 𝑟 = 𝑠

0 otherwise
  (20) 

It is also assumed that the covariance matrix has an inverse Wishart distribution: 

  𝛴~𝐼𝑊(𝛹, 𝑑)      (21) 

                                                        
3 An explosive forecast may appear in all regimes, but in practice these three sources cover all cases for the 
horizons of interest. 
4 These authors use a similar truncation strategy for TVP-VAR, but do not prove its validity. As in the case 
described in this paper, it is just a heuristic. 
5 To simplify the notation, we omit the index of the regime. 
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where 𝛹, 𝑑, 𝜆 are hyperparameters of the prior distribution, which additionally depend on 

hyperparameters. The matrix 𝛹 is chosen to be diagonal, with hyperparameters 𝜓𝑗𝑗 having 

an inverse gamma distribution with parameters 0.0004 and 0.0004. The hyperparameter 𝑑 

is set to be equal to the number of variables in the model plus 2 ( 𝑑 = 𝑁 + 2 ). The 

hyperparameter 𝜆 has a gamma distribution with mode 0.2 and standard deviation 0.4. 

The dummy-initial-observation prior can be implemented with dummy observations: 

    𝑦++ =
�̅�0
′

𝛿0
      (22) 

   𝑥++ = [
1

𝛿0
, 𝑦++, … , 𝑦++]      (23) 

where �̅�0
′  is the average of the initial 𝑝 observations and 𝛿0 is a hyperparameter having a 

gamma prior distribution with mode and standard deviation equal to 1. 

The prior distributions (19), (20), (22) and (23) are truncated as follows: 

     𝑣𝑒𝑐([𝐴1, … , 𝐴𝑝]′)~𝑁(𝑚𝐴(𝜆𝐻), 𝛴𝐴(𝛴, 𝜆𝐻)) 𝐼(𝑙 < 1 − 𝜀)   (24) 

     𝑏~𝑁(𝑚𝑏(𝜆𝐻), 𝛴𝑏(𝛴, 𝜆𝐻))𝐼(𝑙 < 1 − 𝜀)    (25) 

where 0 < 𝜀 < 1, 𝑙 is the largest absolute VAR root, 𝜆𝐻 is the set of hyperparameters6, and 

𝑚𝐴(𝜆𝐻), 𝛴𝐴(𝛴, 𝜆𝐻),𝑚𝑏(𝜆𝐻), 𝛴𝑏(𝛴, 𝜆𝐻) are the first and second moments of [𝐴1, … , 𝐴𝑝] and 𝑏.  

Note that the constraints (24) and (25) also implicitly transform a prior distribution“

raising” in the region of stationarity bounds and its vanishing outside these bounds. Thus, 

in regions where only a small part of the distribution has become obscured, the probability of 

hyperparameters is multiplied by a large number. 

Like Giannone, Lenza and Primiceri (2015), we set upper and lower bounds for the 

distributions of the hyperparameters7, which also helps to mitigate the problem of explosive 

forecasts. For example, for the BVAR model, conditions (24) and (25) restrict explosive 

forecasts given the covariance matrix and hyperparameters, while by integrating out the 

covariance matrix and hyperparameters one can obtain unbounded moments. For the prior 

distributions from Giannone, Lenza and Primiceri (2015), the parameter constraints are set 

to limit the moments of the forecasts. To avoid tedious mathematics, we illustrate this problem 

by using an AR(0) model: 

      𝑦𝑡 = 𝑒𝑡     (26) 

                                                        
6 It is easy to show that the Minnesota prior and the dummy-initial-observation prior can be written as: 

𝑣𝑒𝑐([𝐴1, … , 𝐴𝑝]′)~𝑁(𝑚𝐴(ℎ𝑦𝑝), 𝛴𝐴(𝛴, ℎ𝑦𝑝)) 

𝑏~𝑁(𝑚𝑏(ℎ𝑦𝑝), 𝛴𝑏(𝛴, ℎ𝑦𝑝)) 
7 The restrictions are not described in the text but occur in the code. 
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  𝑒𝑡~𝑁(0, 𝜎)      (27) 

𝜎2~𝐼𝑊(𝜓, 3)      (28) 

    𝜓~𝐼𝐺(0.0004, 0.0004)     (29) 

Conditions (24) and (25) are satisfied. However, as can be seen from (30), the mean of 𝑦𝑡
2 

does not exist because of the absence of a mean of 𝜓: 

  ∫𝑦𝑡
2𝑝(𝑦𝑡|𝜎

2, 𝜓)𝑝(𝜎2|𝜓)𝑝(𝜓)𝑑𝑦𝑡𝑑(𝜎
2)𝑑𝜓 = ∫𝜎2𝑝(𝜎2|𝜓)𝑝(𝜓)𝑑(𝜎2)𝑑𝜓 = ∫𝜓𝑝(𝜓)𝑑𝜓 (30) 

Setting upper and lower bounds for 𝜓 restricts the moments of 𝑦𝑡
2. 

The tempered hierarchical Dirichlet process has a number of hyperparameters: 𝛼, 𝛾 

and 𝜅. We choose prior distributions for the hyperparameters that are the same as in Hou 

(2016), except for the distribution of 𝛼 + 𝜅, which is slightly biased to the right: 

𝛼 + 𝜅~𝐺𝑎𝑚𝑚𝑎(𝑎𝛼+𝜅 , 𝑏𝛼+𝜅)     (31) 

         𝛾~𝐺𝑎𝑚𝑚𝑎(𝑎𝛾, 𝑏𝛾)      (32) 

       𝜌 =
𝜅

𝛼+𝜅
~𝐵𝑒𝑡𝑎(𝑎𝜌, 𝑏𝜌)     (33) 

where 𝑎𝛼+𝜅 = 10, 𝑏𝛼+𝜅 = 1, 𝑎𝛾 = 1, 𝑏𝛾 = 1, 𝑎𝜌 = 10, 𝑏𝜌 = 1.  

Also note that tHDP-VAR, like other MS-VAR models, should in fact be trained from 

scratch when a new regime appears because of the problem of a short sample. This 

disadvantage can be partially reduced in several ways, if necessary. For example, one can 

choose hierarchical prior distributions like those chosen by Hou (2016), who suggests using 

more flexible hyperparameters for mean and covariance matrices than Giannone, Lenza and 

Primiceri (2015) do. This allows new regimes to be learnt from the previous ones. Another 

way is to share a part of the parameters for all regimes (for example, Sims, Waggoner and 

Zha (2008) share the mean), which helps to reduce the number of estimated parameters. 

Dynamic stochastic general equilibrium (DSGE) priors can also be used (Del Negro & 

Schorfheide, 2004) to add information from the DSGE model before the data occurrence. All 

these methods can be applied and, depending on the task, may be better or worse than their 

alternatives. In this paper, another simple method is used to add information to the new 

regimes. In addition to the priors from Giannone, Lenza and Primiceri (2015), we add a 

number of real observations from pre-sample data or from the sample for another country. In 

fact, these are dummy observations without learned hyperparameters. These dummy 

observations are added to help the model choose coefficients, as it might do, for example, 

with DSGE priors, but with real instead of artificial data. 
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5. Model estimation 
 

A mixture of the traditional algorithm from Fox, Sudderth, Jordan and Willsky (2007) 

and the beam sampler from Van Gael, Saatci, Teh and Ghahramani (2008) is used for the 

estimation of tHDP. This algorithm is similar to the algorithms presented by Song (2014) and 

Hou (2016), and it is described in Appendix B (we call it the basic algorithm).  

In addition to small differences between our algorithm and the algorithm described by 

Hou (2016), such as the use of the adaptive Metropolis–Hastings (MH) algorithm (Roberts & 

Rosenthal, 2009) for sampling VAR hyperparameters or the scheme for sampling auxiliary 

variables, there is a step for the coefficients for the truncated VAR that is largely determined 

by computational time. Coefficients for the truncated model cannot be sampled from the 

normal-inverse-Wishart distribution like in the case of non-truncated priors. To solve this 

problem, the accept-reject algorithm is applied to the non-truncated model for each regime 

separately. The number of iterations in the accept-reject algorithm can be large, especially 

for regimes where a small proportion of the non-truncated distribution lies in the stationary 

region (𝐼(𝑙 < 1 − 𝜀)), which may lead to a significantly increased computational time. 

In order to mitigate the problem, which usually occurs in models with a large number 

of series and/or “ less stable”  series, we offer a heuristic that helps to reduce the 

computational time for forecasting models. Even for a model with three variables (see below), 

this heuristic helps to reduce computational time by several times. This algorithm does not 

draw exactly from the posterior, but it is expected that its forecasting performance might be 

close to the exact algorithm. At the first step, the model with non-truncated priors is estimated 

using the variational Bayes algorithm8 (see Appendix C). At the forecasting stage, the state 

of the last period, transition probabilities and VAR coefficients are sampled from the 

approximate posterior density, and are accepted if the VAR coefficients lie in the stationary 

region. We should note that the VAR coefficient has to be drawn only for the regime of the 

last period and the regimes that are sampled in the forecasting period. It helps to avoid 

sampling coefficients for “rare” regimes, which are often “less stable”. Alternatively, we 

check the stability of the system for each new regime using the criteria from Costa, Fragoso 

and Marques (2005) and ensure the stability of the forecasts. 

 

                                                        
8 See Beal (2003) and Wainwright and Jordan (2008) for an introduction to variational Bayes approximation. 
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6. Applications 
 

We apply the proposed algorithms to two datasets: US data (change of logarithm of 

GDP, change of logarithm of GDP deflator, and effective federal fund rate), and data for the 

Russian Federation (change of logarithm of GDP, change of logarithm of CPI, and MIACR 

interest rate (weighted average actual rates on Moscow banks’ credits)). The first dataset 

(from 1959Q2 to 2008Q4) is taken from Giannone, Lenza and Primiceri (2015) and is more 

or less standard for papers on VAR and MS-VAR models. The second dataset is of interest 

because of the possible presence of several structural breaks in a short period of time (we 

use data from 1997Q2 to 2016Q4). 

For each dataset, we estimate several models: a VAR model, a BVAR model, and a 

tHDP-VAR model estimated by basic and variational algorithms. We also check the 

usefulness of adding several real points into each regime for the variational algorithm, and 

we check for stability using the algorithm from Costa, Fragoso and Marques (2005). All 

models are estimated for lags from 1 to 5. 

For each model, we run recursive forecasts (estimate the model, run the forecasting 

procedure, add one point to the sample, estimate the model, etc.). The VAR model is trained 

using the maximum likelihood method, and then coefficients are used for point forecasting. 

The BVAR model is trained using the MH algorithm (5,000 initial iterations and 20,000 main 

iterations) in a similar way to the method in Giannone, Lenza and Primiceri (2015). The tHDP-

VAR model is estimated using the algorithm from Appendix B. For the preliminary estimation, 

110,000 iterations of the algorithm are run for starting points (without inclusion of the first 

forecast point). Then we add one point and train the model using the last values of the 

sampled parameters and variables as the initial ones, and also setting the regime for the new 

period equal to the previous one9. As for the BVAR model, only 20,000 of the 25,000 

iterations are saved. For simplicity, we fix the hyperparameters for HDP in the variational 

algorithm, setting α = 1, γ = 1, κ = 10, which is an additional model constraint; this 

constraint may influence the forecasting performance, but in our experience does not do so 

for a wide range of hyperparameters. Taking into account that the variational approximation 

can be used without initial draws (see Appendix C), only 20,000 trajectories are sampled. 

                                                        
9 The retraining procedure helps to reduce computational time and is successfully applied in machine learning (Graves, 

2012). 
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We concentrate on five issues: 1) does the non-truncated model produce unrealistic 

forecasts? 2) are the MS model forecasting properties better than the forecasting properties 

of VAR and BVAR? 3) is variational approximation useful? 4) are additional observations 

useful? and 5) does our simple truncation strategy perform in a similar way to more complex 

strategies? 

Does the non-truncated model produce unrealistic forecasts? We demonstrate the 

existence of explosive forecasts for the non-truncated model by plotting the US GDP deflator 

forecast for tHDP-VAR with 3 lags at the first forecasting point. Figure 2 shows that the 

change of logarithm of the GDP deflator is explosive, which confirms this. Using this type of 

forecast obviously leads to a large mean square forecast error, so we do not demonstrate 

the results of non-truncated MS models later. 

Are the MS model forecasting properties better than forecasting properties of VAR and 

BVAR? We start the forecasting procedure from 1974Q4 and 2004Q2 and predict values for 

horizons from 1 to 12. RWMSFE is used (root weighted mean square forecast error) as a 

measure of forecasting performance: 

𝑅𝑊𝑀𝑆𝐹𝐸 = √∑
𝑀𝑆𝐹𝐸𝑖
𝑣𝑎𝑟(𝑦𝑖)

𝑁

𝑖=1

 

where 𝑀𝑆𝐹𝐸𝑖  is the mean square forecast error for the 𝑖 th variable and 𝑣𝑎𝑟(𝑦𝑖)  is the 

empirical variance of the 𝑖th variable. 

Figures 3–7 demonstrate the relative RWMSFEs (VAR(1) is the benchmark) for the US 

dataset depending on the starting point for calculation (Table 1 contains RWMSFE for the 

full test period), because the results might be sensitive to the period of testing. The same 

results for the Russian data are shown in Figures 8–12 and Table 2. The ranking of the 

models depends on the starting points, but for almost all the models and forecasting horizons 

tHDP-VAR outperforms VAR and BVAR. BVAR and VAR rarely produce competitive results, 

and only do so for large horizons (8, 12) or large lags (3–5)10. Moreover, for both datasets 

the most preferable tHDP-VAR model usually contains 1–2 lags, so the worsening of the 

forecasting properties for the larger lag lengths it is not a problem. These results help to show 

that for both datasets the MS model is useful for forecasting. 

                                                        
10 Note also that for the US data such results appear only for starting points after 1980. 
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Is variational approximation useful? We are basically concerned with the forecasting 

properties of the models, so we measure usefulness as an improvement/deterioration of 

RWMSFE. Figures 3–12 demonstrate that RWMSFE is usually larger for variational Bayesian 

(VB) approximation. There are many possible reasons for this behaviour of VB 

approximation: initialization (or optimization procedure), having fixed hyperparameters, 

approximating the non-truncated model, and using a poor approximation family, among 

others. We ran a number of additional experiments and found that, for the Russian dataset, 

the optimizer fell into a local optimum for some points, so the results for this dataset are 

partially related to this. For some different sets of hyperparameters, the RWMSFEs are 

similar to those plotted, which is a sign of the small impact of this factor11. We failed to split 

other effects and leave this for further research. 

Despite the fact that the VB approximation is sometimes not good, this model might 

still be useful for forecasting. For example, for short horizons on the Russian dataset it 

performs better than VAR and BVAR. We relate this to large outliers in the Russian dataset 

and the fact that the MS model does not use these explicitly for other regimes. Additionally, 

as expected, the VB algorithm reduces computational time by a factor of 2–4. 

Are additional observations useful? To investigate this question, we add ten additional 

observations for each regime in the VB model for both datasets. For US data, we choose ten 

starting points as additional observations. The starting points for the Russian dataset are 

extremely volatile and cannot be used as information for regimes. We found that, in practice, 

the same ten starting points from the US dataset are a good choice.  

For the US dataset, there is no difference between the previously estimated BVAR 

and the BVAR estimated with the additional observations. This is the consequence of the 

fact that we exclude starting points from the data and add them again as additional 

observations. By contrast, the VB model demonstrates changes in forecasting performance. 

Depending on the lag and forecasting horizon, it performs better or worse than the model 

without additional observations (usually better), but in all cases except for one (5 lags, 1 

period to predict) it is no worse than the BVAR and VAR models. For the Russian dataset, 

the additional observations do the same work (slightly changing the results for BVAR). For 

this dataset, the VB model with additional observations is always better than VAR and BVAR.  

In some cases, additional observations decrease the performance for shorter 

horizons, but in all cases they improve RWMSFE for longer horizons. As mentioned above, 

                                                        
11 We probably did not choose enough competitors because of computational constraints. 
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the VB model with additional observations improves the forecasts of BVAR and VAR, so, of 

course, this model is useful. For the “more unstable”  Russian dataset, additional 

observations help in two other ways. First, they decrease computational times by a factor of 

30–50 by stabilizing the regimes and producing fewer samples with bubble roots. Secondly, 

the VB algorithm with additional observations falls into poor local optima less often. 

Does our simple truncation strategy perform in a similar way to more complex 

strategies? We ran the VB model with additional observations with the alternative truncation 

strategy that ensures non-explosive forecasts. To save space, only the results for 3 lags are 

plotted. Figures 13–14 demonstrate that the model with alternative truncation has similar 

RWMSFEs, so our truncation strategy works well for both datasets.  

 

7. Conclusion 
 

We investigate the occurrence of explosive forecasts in tHDP-VAR models. Our 

analysis demonstrates that one of the sources of explosive forecasts is the nonzero 

probability of large roots for each regime. Despite the fact that this is not the unique source 

of this type of forecast (and is not always the source), we show that excluding bubble roots 

from each regime helps to mitigate the problem for reasonable forecasting horizons for US 

and Russian datasets. We also find that tHDP-VAR and VB approximations (with additional 

observations) might be useful for forecasting. 
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Appendix A 
 

 

Table 1. Relative RWMSFEs (VAR(1) is benchmark) for the US dataset 
 
 
 
 
 

model lag 1 2 4 8 12

VAR 1 1 1 1 1

BVAR 0,97      0,98      0,98      1,00      1,02      

tHDP-VAR 0,94      0,91      0,88      0,81      0,77      

VB 0,96      0,93      0,93      0,86      0,82      

VB with obs 0,95      0,94      0,88      0,84      0,79      

VAR 1,03      1,03      1,00      0,94      0,89      

BVAR 0,98      0,99      0,98      0,96      0,94      

tHDP-VAR 0,97      0,94      0,91      0,80      0,75      

VB 0,98      0,98      0,96      0,85      0,79      

VB with obs 0,98      1,00      0,92      0,83      0,77      

VAR 1,02      1,03      1,02      1,04      1,05      

BVAR 0,97      0,99      0,97      0,97      0,97      

tHDP-VAR 0,96      0,94      0,90      0,81      0,78      

VB 0,99      1,00      0,98      0,86      0,79      

VB with obs 0,96      0,98      0,91      0,83      0,78      

VAR 1,07      1,07      1,04      1,03      0,97      

BVAR 0,98      0,99      0,98      0,97      0,96      

tHDP-VAR 0,95      0,95      0,91      0,80      0,75      

VB 1,00      1,01      1,00      0,88      0,80      

VB with obs 0,96      0,99      0,90      0,83      0,77      

VAR 1,09      1,09      1,03      1,01      0,92      

BVAR 0,97      0,99      0,97      0,96      0,93      

tHDP-VAR 0,96      0,94      0,89      0,80      0,74      

VB 0,97      0,98      0,96      0,86      0,80      

VB with obs 0,99      0,98      0,90      0,81      0,75      

1

2

3

4

5
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Table 2. Relative RWMSFEs (VAR(1) is benchmark) for the Russian dataset 
 
 
 

model lag 1 2 4 8 12

VAR 1 1 1 1 1

BVAR 0,87      0,87      0,85      0,99      0,98      

tHDP-VAR 0,61      0,58      0,52      0,68      0,76      

VB 0,67      0,71      0,75      1,08      1,27      

VB with obs 0,65      0,61      0,52      0,63      0,71      

VAR 1,11      1,16      0,74      0,88      1,01      

BVAR 0,93      0,93      0,75      0,85      0,93      

tHDP-VAR 0,60      0,60      0,56      0,79      0,96      

VB 0,70      0,74      0,77      1,34      1,67      

VB with obs 0,60      0,55      0,46      0,62      0,71      

VAR 1,24      1,50      0,73      0,72      0,85      

BVAR 1,06      1,18      0,75      0,78      0,94      

tHDP-VAR 0,60      0,60      0,58      0,89      1,12      

VB 0,75      0,77      0,79      1,21      1,48      

VB with obs 0,80      0,60      0,49      0,67      0,78      

VAR 1,19      1,42      1,07      1,19      0,90      

BVAR 1,06      1,21      0,90      0,92      0,98      

tHDP-VAR 0,60      0,60      0,54      0,79      0,93      

VB 0,71      0,76      0,77      1,16      1,31      

VB with obs 0,79      0,64      0,50      0,66      0,75      

VAR 1,24      0,89      0,58      0,77      0,93      

BVAR 1,08      0,85      0,59      0,75      0,93      

tHDP-VAR 0,59      0,58      0,52      0,72      0,80      

VB 0,70      0,74      0,75      1,07      1,18      

VB with obs 0,63      0,59      0,49      0,68      0,80      

5

1

2

3

4
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Figure 1. Prior, posterior and bounds of stationarity for the AR(1) model 

 
Figure 2. US GDP deflator forecast for tHDP-VAR with 3 lags at the first point, log-change 
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Figure 3. Relative RWMSFEs (VAR(1) is benchmark) for the US dataset depending on the 

starting point for calculation, 1 lag 

 
Figure 4. Relative RWMSFEs (VAR(1) is benchmark) for the US dataset depending on the 

starting point for calculation, 2 lags 
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Figure 5. Relative RWMSFEs (VAR(1) is benchmark) for the US dataset depending on the 

starting point for calculation, 3 lags 

 
Figure 6. Relative RWMSFEs (VAR(1) is benchmark) for the US dataset depending on the 

starting point for calculation, 4 lags 
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Figure 7. Relative RWMSFEs (VAR(1) is benchmark) for the US dataset depending on the 

starting point for calculation, 5 lags 

 
Figure 8. Relative RWMSFEs (VAR(1) is benchmark) for the Russian dataset depending 

on the starting point for calculation, 1 lag 
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Figure 9. Relative RWMSFEs (VAR(1) is benchmark) for the Russian dataset depending 

on the starting point for calculation, 2 lags 

 
Figure 10. Relative RWMSFEs (VAR(1) is benchmark) for the Russian dataset depending 

on the starting point for calculation, 3 lags 
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Figure 11. Relative RWMSFEs (VAR(1) is benchmark) for the Russian dataset depending 

on the starting point for calculation, 4 lags 

 
Figure 12. Relative RWMSFEs (VAR(1) is benchmark) for the Russian dataset depending 

on the starting point for calculation, 5 lags 
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Figure 13. Relative RWMSFEs (VAR(1) is benchmark) for the US dataset depending on 

starting point for calculation, 3 lags 

 
Figure 14. Relative RWMSFEs (VAR(1) is benchmark) for Russian dataset depending on 

starting point for calculation, 3 lags 
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Appendix B 
 

The scheme of sampling can be written as follows: 

For 𝑛𝑠𝑖𝑚 =  1,… ,𝑁𝑠𝑖𝑚:  

1. Sample auxiliary variables 𝑤,𝑚,𝑚ℎ and �̅�: 

1.1. For each active state (𝑖, 𝑗), define 𝐽𝑖𝑗 = {𝜏|𝑐𝜏−1 = 𝑖, 𝑐𝜏 = 𝑗}. Set 𝑚𝑖𝑗 = 0, 𝑛 = 0, and for 

each 𝜏 ∈ 𝐽𝑖𝑗 sample 

𝑥~𝐵𝑒𝑟 (
𝛼𝛽𝑗

′ + 𝜅𝐼(𝑖 = 𝑗)

𝑛 + 𝛼𝛽𝑗 + 𝜅𝐼(𝑖 = 𝑗)
) 

Increment 𝑛, and if 𝑥 = 1 increment 𝑚𝑖𝑗. 

1.2. For each active 𝑗, sample:  

𝑤𝑗~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑚𝑗𝑗 ,
𝜌

𝜌 + 𝛽𝑗
′(1 − 𝜌)

) 

1.3. For each active 𝑗, set 𝑚ℎ,𝑗 = 0. For 𝑗 = 𝑐0, set 𝑚ℎ,𝑗 = 1. 

1.4. Set 

�̅� = 𝑚 − 𝑑𝑖𝑎𝑔(𝑤) + 𝑑𝑖𝑎𝑔(𝑚ℎ) 

2. Sample 𝛼, 𝜅, 𝛾: 

2.1. Sample 

𝜂~𝐵𝑒𝑡𝑎(𝛾 + 1, �̅�..) 

and for each active 𝑗, sample 

𝑟𝑗~𝐵𝑒𝑡𝑎(𝛼 + 𝜅 + 1, 𝑛𝑗.) 

𝑠𝑗~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (1,
𝑛𝑗.

𝛼 + 𝜅 + 𝑛𝑗.
) 

2.2. Sample 

𝛾~
𝑎𝛾 + �̅� − 1

�̅�..(𝑏𝛾 − 𝑙𝑜𝑔(𝜂))
𝐺𝑎𝑚𝑚𝑎(𝑎𝛾 + �̅�, 𝑏𝛾 − 𝑙𝑜𝑔(𝜂))

+ (1 −
𝑎𝛾 + �̅� − 1

�̅�..(𝑏𝛾 − 𝑙𝑜𝑔(𝜂))
)𝐺𝑎𝑚𝑚𝑎(𝑎𝛾 + �̅� − 1, 𝑏𝛾 − 𝑙𝑜𝑔(𝜂)) 

and 

𝛼 + 𝜅~𝐺𝑎𝑚𝑚𝑎 (𝑎𝛼+𝜅 +𝑚.. −∑𝑠𝑗 , 𝑏𝛼+𝜅 −∑𝑙𝑜𝑔(𝑟𝑗)) 

2.3. Sample 

𝜌~𝐵𝑒𝑡𝑎 (∑𝑤𝑗 + 𝑎𝜌, 𝑚.. −∑𝑤𝑗 + 𝑏𝜌) 
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3. For 𝐾 active states, sample  

(𝜋01, . . . , 𝜋0𝐾 ,∑ 𝜋0𝑘
∞

𝑘=𝐾+1
)~𝐷𝑖𝑟(�̅�.1, … , �̅�.𝐾, 𝛾) 

4. For 𝐾 active states, sample 

𝜋𝑘 = (𝜋𝑘1, . . . , 𝜋𝑘𝐾,∑ 𝜋𝑘𝑙
∞

𝑙=𝐾+1
)~𝐷𝑖𝑟 (𝛼𝜋01 + 𝑛𝑘1, … , 𝛼𝜋0𝑘 + 𝜅 + 𝑛𝑘𝑘, … , 𝛼𝜋0𝐾

+ 𝑛𝑘𝐾, 𝛼∑ 𝜋0𝑙
∞

𝑙=𝐾+1
) 

5. Sample VAR hyperparameters (𝜆𝐻) using the adaptive MH algorithm from Roberts 

and Rosenthal (2009) with proposal density 

𝑞(𝜆𝐻
′ |𝜆𝐻

(𝑖−1)
) 

and acceptance rate 

𝛼′ = 𝑚𝑖𝑛(1,
∏ 𝑝(𝜃𝑘|𝜆𝐻

′ )𝐾
𝑘=1

∏ 𝑝(𝜃𝑘|𝜆𝐻
(𝑖−1)

)𝐾
𝑘=1

𝑝(𝜆𝐻
′ )

𝑝(𝜆𝐻
(𝑖−1)

)
 
𝑞(𝜆𝐻

(𝑖−1)
|𝜆𝐻
′ )

𝑞(𝜆𝐻
′ |𝜆𝐻

(𝑖−1)
)
) 

For active states, sample 𝜃𝑘 with the accept-reject algorithm. 

6. Sample auxiliary variables 𝑈𝑡 for 𝑡 = 0,… , 𝑇 

𝑈𝑡~𝐼(𝑡 = 0)𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝜋0𝑐0  ) + 𝐼(𝑡 > 0)𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝜋𝑐𝑡−1𝑐𝑡  ) 

7. Set 𝐾′ = 𝐾 and check that for each 𝑡  

𝑈0 > ∑ 𝜋0𝑙
∞
𝑙=𝐾′+1  and 𝑈𝑡 > ∑ 𝜋𝑐𝑡−1𝑙

∞
𝑙=𝐾′+1  

If it is not true, set 𝐾′ = 𝐾′ + 1 and expand 𝜋0 and 𝜋 in the following way: 

7.1. Set 𝛽𝐾′ = 𝑏𝑏∑ 𝜋0𝑙
∞
𝑙=𝐾′  and 𝜋0𝐾′+1 =

𝜋
0𝐾′

𝑏𝑏
(1 − 𝑏𝑏) , where 𝑏𝑏~𝐵𝑒𝑡𝑎(1, 𝛾). 

7.2. For 𝑘 = 1,… , 𝐾′ − 1 , set 𝜋𝑘𝐾′ = 𝑏𝑏∑ 𝜋𝑘𝑙
∞
𝑙=𝐾′  and 𝜋𝑘𝐾′+1 =

𝜋
0𝐾′

𝑏𝑏
(1 − 𝑏𝑏) , where 

𝑏𝑏~𝐵𝑒𝑡𝑎(𝛼𝜋0𝐾′ , 𝛼𝜋0𝐾′+1). 

7.3. Sample 

𝜋𝐾′~𝐷𝑖𝑟(𝛼𝜋01, … , 𝛼𝜋0𝐾′ + 𝜅, 𝛼𝜋0𝐾′+1) 

Repeat until convergence. 

8. For non-active states, sample 𝜃𝑘 using the accept-reject algorithm. 

9. Sample 𝑐0:𝑇 in the following way: 

9.1. Set 

𝑝(𝑐0 = 𝑘|𝑈, 𝜃, 𝜋0, 𝜋)~𝐼(𝑈0 < 𝜋0𝑘) 

𝑝(𝑐1 = 𝑘|𝑈, 𝜃, 𝜋0, 𝜋)~∑𝐼(𝑈1 < 𝜋𝑖𝑘)𝑝(𝑐0 = 𝑖|𝑈, 𝜃, 𝜋0, 𝜋)

𝐾′

𝑖=1
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9.2. For 𝑡 = 1,… , 𝑇: 

Set 

𝑝(𝑐𝑡 = 𝑘|𝑦1:𝑡, 𝑈, 𝜃, 𝜋0, 𝜋)~𝑝(𝑐𝑡 = 𝑘|𝑦1:𝑡−1, 𝑈, 𝜃, 𝜋0, 𝜋)𝑝(𝑦𝑡|𝜃𝑐𝑡 , 𝑦1:𝑡−1) 

If 𝑡 < 𝑇, set 

𝑝(𝑐𝑡+1 = 𝑘|𝑦1:𝑡, 𝑈, 𝜃, 𝜋0, 𝜋)~∑𝐼(𝑈𝑡+1 < 𝜋𝑖𝑘)𝑝(𝑐𝑡 = 𝑖|𝑦1:𝑡, 𝑈, 𝜃, 𝜋0, 𝜋)

𝐾′

𝑖=1

 

9.3. Sample 𝑐𝑇 from 𝑝(𝑐𝑇 = 𝑘|𝑦1:𝑇, 𝜃, 𝜋0, 𝜋). 

9.4. For 𝑡 =  𝑇 − 1,… ,0, sample 𝑐𝑡 from 

𝑝(𝑐𝑡 = 𝑘|𝑐𝑡+1 = 𝑖, 𝑦1:𝑇 , 𝑈, 𝜃, 𝜋0, 𝜋)~𝑝(𝑐𝑡 = 𝑘|𝑦1:𝑡, 𝑈, 𝜃, 𝜋0, 𝜋)𝐼(𝑈𝑡+1 < 𝜋𝑘𝑖) 

10. Remove empty states. 
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Appendix C 
 

For variational approximation, we rewrite the system in the following form: 

 

𝛽𝑘
′~𝐵𝑒𝑡𝑎(1, 𝛾)   𝑘 = 1, 2, …    

𝛽𝑘 = 𝛽𝑘
′ ∏ (1 − 𝛽𝑙

′)𝑘−1
𝑙=1   𝑘 = 1, 2, …    

𝜋𝑖1, … , 𝜋𝑖𝑁 , …~𝐷𝑃 (𝛼 + 𝜅,
𝛼𝛽+𝜅𝐼(𝑖=𝑗)

𝛼+𝜅
) 𝑖 = 0, 1, 2, … 

           𝑝(𝑐𝑡 = 𝑘|𝑐𝑡−1 = 𝑘′, 𝜋1∗, … , 𝜋𝑁∗, … ) =  𝜋𝑘′𝑘    

                       𝑦𝑡~ 𝑝(𝜃
𝑘, 𝑦𝑡−1, … , 𝑦𝑡−𝑝)         

For brevity, we omit the dependence on hyperparameters. For simplicity of calculations (and 

for comparability with Stephenson and Raphael (2015)), we additionally assume that 𝜋0 has 

a different distribution from that described earlier.  

For approximation of the model, we follow Stephenson and Raphael (2015) in 

representing the approximated density as:  

𝑞(𝛽′, 𝜋, 𝜃, 𝑐) = 𝑞(𝛽′)𝑞(𝜋)𝑞(𝜃)𝑞(𝑐) 

where 𝛽′, 𝜋, 𝜃, 𝑐  are sets of variables with respective indexes. In this case, the objective 

function has the following form: 

𝐿 = 𝐸𝑞[𝑙𝑜𝑔(𝑝(𝑦, 𝛽
′, 𝜋, 𝜃, 𝑐)) − 𝑙𝑜𝑔(𝑞(𝛽′, 𝜋, 𝜃, 𝑐))]

= 𝐸𝑞[𝑙𝑜𝑔(𝑝(𝑦|𝜃, 𝑐)) + 𝑙𝑜𝑔(𝑝(𝜃)) − 𝑙𝑜𝑔(𝑞(𝜃)) + 𝑙𝑜𝑔(𝑝(𝛽
′|𝛾)) − 𝑙𝑜𝑔(𝑞(𝛽′))

+ 𝑙𝑜𝑔(𝑝(𝜋|𝛽′, 𝛼, 𝜅)) − 𝑙𝑜𝑔(𝑞(𝜋)) + 𝑙𝑜𝑔(𝑝(𝑐|𝜋)) − 𝑙𝑜𝑔(𝑞(𝑐))] 

where 𝐸𝑞 is an operator of expectation with respect to 𝑞, and 𝑦 are the observations of the 

model (𝑦1, … , 𝑦𝑇). 

 

C.1. Optimizing 𝒒(𝝅) 

The objective function with respect to 𝑞(𝜋) is  

𝐿 = 𝑐𝑜𝑛𝑠𝑡 + 𝐸𝑞[𝑙𝑜𝑔(𝑝(𝜋|𝛽𝑘
′ , 𝛼, 𝜅)) − 𝑙𝑜𝑔(𝑞(𝜋)) + 𝑙𝑜𝑔(𝑝(𝑐|𝜋))] 

The first-order derivative is 

𝜕𝐿

𝜕𝑞(𝜋)
= 𝐸𝑞(𝛽′)[𝑙𝑜𝑔(𝑝(𝜋|𝛽

′, 𝛼, 𝜅))] − 𝑙𝑜𝑔(𝑞(𝜋)) − 1 + 𝐸𝑞(𝑐)[𝑙𝑜𝑔(𝑝(𝑐|𝜋))] 

Setting the first-order derivative equal to zero, we have 

𝑙𝑜𝑔(𝑞(𝜋)) = 𝐸𝑞(𝛽′)[𝑙𝑜𝑔(𝑝(𝜋|𝛽
′, 𝛼, 𝜅))] − 1 + 𝐸𝑞(𝑐)[𝑙𝑜𝑔(𝑝(𝑐|𝜋))] 
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𝑙𝑜𝑔(𝑞(𝜋)) = 𝑙𝑜𝑔(𝑞(𝜋0)…𝑞(𝜋𝐾)… ) = 𝑙𝑜𝑔(𝑞(𝜋0)) + ⋯ 𝑙𝑜𝑔(𝑞(𝜋𝐾)) + ⋯

= 𝐸𝑞(𝛽′)[𝑙𝑜𝑔(𝑝(𝜋0|𝛽
′, 𝛼, 𝜅))] + ⋯+ 𝐸𝑞(𝛽′)[𝑙𝑜𝑔(𝑝(𝜋𝐾|𝛽

′, 𝛼, 𝜅))] + ⋯− 1

+ 𝐸𝑞(𝑐) [𝑙𝑜𝑔 (𝑝(𝑐0|𝜋𝑐0))] +∑𝐸𝑞(𝑐) [𝑙𝑜𝑔 (𝑝(𝑐𝑡|𝜋𝑐𝑡 , 𝑐𝑡−1))]

𝑇

𝑡=1

 

Finally, it is possible to get the closed form solution 

𝑞(𝜋0) = 𝐷𝑖𝑟(�̂�0) 

�̂�0𝑘 = 𝛼𝐸𝑞(𝛽′)[𝛽𝑘] + 𝐸𝑞(𝑐)[𝐼(𝑐0 = 𝑘)] 

𝑞(𝜋𝑖) = 𝐷𝑖𝑟(�̂�𝑖) 𝑖 = 1, 2, … 

�̂�𝑖𝑘 = 𝛼𝐸𝑞(𝛽′)[𝛽𝑘] + 𝜅𝐼(𝑖 = 𝑗) +∑𝐸𝑞(𝑐)[𝐼(𝑐𝑡−1 = 𝑖)𝐼(𝑐𝑡 = 𝑘)]

𝑇

𝑡=1

 

C.2. Optimizing 𝒒(𝜽) 

The objective function with respect to 𝑞(𝜃) is 

𝐿 = 𝑐𝑜𝑛𝑠𝑡 + 𝐸𝑞[𝑙𝑜𝑔(𝑝(𝑦|𝜃, 𝑐)) + 𝑙𝑜𝑔(𝑝(𝜃)) − 𝑙𝑜𝑔(𝑞(𝜃))] 

The first-order derivative is 

𝜕𝐿

𝜕𝑞(𝜃)
= 𝐸𝑞(𝑐)[𝑙𝑜𝑔(𝑝(𝑦|𝜃, 𝑐))] + 𝑙𝑜𝑔(𝑝(𝜃)) − 1 − 𝑙𝑜𝑔(𝑞(𝜃)) = 0 

The logarithm of the 𝑘th coordinate of the distribution of 𝑞(𝜃) is 

𝑙𝑜𝑔(𝑞(𝜃𝑘)) = 𝑐𝑜𝑛𝑠𝑡 + 𝑙𝑜𝑔(𝑝(𝜃𝑘)) + 𝐸𝑞(𝑐) [∑𝐼(𝑐𝑡 = 𝑘) 𝑙𝑜𝑔(𝑝(𝑦𝑡|𝜃
𝑘))

𝑇

𝑡=1

] 

Taking into account the fact that we are building the approximation for the tHDP-VAR model, 

we get: 

𝑙𝑜𝑔 (𝑝(𝑏, 𝐴1, … , 𝐴𝑝, 𝛴|𝜆𝐻)) =

= 𝑐𝑜𝑛𝑠𝑡 −
1

2
𝑙𝑜𝑔|𝛴 ⊗ 𝛺| −

1

2
(𝛽 − 𝛽0)

𝑇(𝛴 ⊗ 𝛺)−1(𝛽 − 𝛽0) −
1

2
𝑙𝑜𝑔|𝛴|

−
1

2
(𝑌++ − 𝑋++𝛽)𝑇𝛴−1(𝑌++ − 𝑋++𝛽) +

𝑑

2
𝑙𝑜𝑔|𝛹| −

𝑁 + 𝑑 + 1

2
𝑙𝑜𝑔|𝛴|

−
1

2
𝑡𝑟(𝛹𝛴−1) 

where 𝛽 = 𝑣𝑒𝑐([𝑏, 𝐴1, … , 𝐴𝑝]′), 𝛽0 is the mean of the Minnesota prior coefficients, 𝛺 is the 

matrix of hyperparameters which is responsible for the variance of the Minnesota prior 

coefficients, and 𝑌++ and 𝑋++ are dummy observation variables. 

𝑙𝑜𝑔(𝑝(𝑦|𝜃𝑘)) = −
1

2
𝑙𝑜𝑔|𝛴𝑘⊗ 𝐼𝑇| −

1

2
(𝑌 − 𝑋𝛽𝑘)

𝑇(𝛴𝑘⊗ 𝐼𝑇)
−1(𝑌 − 𝑋𝛽𝑘) 
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where 𝑦 = [𝑦1, … , 𝑦𝑇]
′, 𝑌 = 𝑣𝑒𝑐(𝑦), 𝑥𝑡 = [1, 𝑦𝑡−1

′ , … , 𝑦𝑡−𝑝
′ ], 𝑥𝑡 = 𝐼𝑁⊗𝑥𝑡

′ , 𝑥 = [𝑥1, … , 𝑥𝑇]
′, 𝑥𝑡 =

𝐼𝑁⊗𝑥. 

𝑙𝑜𝑔(𝑞(𝜃𝑘)) = 𝑐𝑜𝑛𝑠𝑡 −
1

2
𝑙𝑜𝑔|𝛴𝑘⊗𝛺| −

1

2
(𝛽𝑘 − 𝛽0)

𝑇(𝛴 ⊗ 𝛺)−1(𝛽𝑘 − 𝛽0) −
1

2
𝑙𝑜𝑔|𝛴𝑘|

−
1

2
(𝑌++ − 𝑋++𝛽𝑘)

𝑇𝛴𝑘
−1(𝑌++ − 𝑋++𝛽𝑘) +

𝑑

2
𝑙𝑜𝑔|𝛹| −

𝑁 + 𝑑 + 1

2
𝑙𝑜𝑔|𝛴𝑘|

−
1

2
𝑡𝑟(𝛹𝛴𝑘

−1) −
1

2
𝐸𝑞(𝑐) [∑𝐼(𝑐𝑡 = 𝑘) 𝑙𝑜𝑔|𝛴𝑘|

𝑇

𝑡=1

]

−
1

2
𝐸𝑞(𝑐) [∑𝐼(𝑐𝑡 = 𝑘)(𝑦𝑡 − 𝑥𝑡𝛽𝑘)

𝑇𝛴𝑘
−1(𝑦𝑡 − 𝑥𝑡𝛽𝑘)

𝑇

𝑡=1

]

= 𝑐𝑜𝑛𝑠𝑡 −
𝑁𝑝 + 1 + 𝑁 + 𝑑 + 1 + 1 + ∑ 𝐼(𝑐𝑡 = 𝑘)𝑇

𝑡=1

2
𝑙𝑜𝑔|𝛴𝑘| −

𝑁

2
𝑙𝑜𝑔|𝛺|

+
𝑑

2
𝑙𝑜𝑔|𝛹| −

1

2
𝑡𝑟(𝛹𝛴𝑘

−1)

−
1

2
((𝛽𝑘 − 𝛽0)

𝑇(𝛴𝑘⊗𝛺)−1(𝛽𝑘 − 𝛽0) + (𝑌
++ − 𝑋++𝛽𝑘)

𝑇𝛴𝑘
−1(𝑌++ − 𝑋++𝛽𝑘)

+ (𝑌 − 𝑋𝛽𝑘)
𝑇(𝛴𝑘

−1⊗𝐸𝑞(𝑐)[𝐼𝑇(𝑐𝑡 = 𝑘)])(𝑌 − 𝑋𝛽𝑘)) 

This can be rewritten in the following form: 

𝑞(𝛽𝑘|𝛴𝑘) = 𝑁 (𝑣𝑒𝑐(�̃�𝑘); 𝛴𝑘⊗ (𝛺−1 + 𝑥𝑇𝐸𝑞(𝑐)[𝐼𝑇(𝑐𝑡 = 𝑘)]𝑥 + (𝑥
++)𝑇𝑥++)

−1
) 

𝑞(𝛴𝑘) = 𝐼𝑊 (𝛹 + (�̃�𝑘 − 𝛽0
𝑚)

𝑇
𝛺−1(�̃�𝑘 − 𝛽0

𝑚) + �̃�++𝑇�̃�++ + �̃�𝑇𝐸𝑞(𝑐)[𝐼𝑇(𝑐𝑡 = 𝑘)]�̃�; 𝑑 + 1

+∑𝐼(𝑐𝑡 = 𝑘)

𝑇

𝑡=1

) 

where �̃�𝑘 = (𝛺
−1 + 𝑥𝑇𝐸𝑞(𝑐)[𝐼𝑇(𝑐𝑡 = 𝑘)]𝑥 + (𝑥

++)𝑇𝑥++)
−1
(𝛺−1𝛽0

𝑚 + (𝑥++)𝑇𝑦++ +

𝑥𝑇𝐸𝑞(𝑐)[𝐼𝑇(𝑐𝑡 = 𝑘)]𝑦). 

Furthermore, we will use 

𝛹𝑘 = 𝛹 + (�̃�𝑘 − 𝛽0
𝑚)

𝑇
𝛺−1(�̃�𝑘 − 𝛽0

𝑚) + �̃�++𝑇�̃�++ + �̃�𝑇𝐸𝑞(𝑐)[𝐼𝑇(𝑐𝑡 = 𝑘)]�̃� 

𝑑𝑘 = 𝑑 + 1 +∑𝐼(𝑐𝑡 = 𝑘)

𝑇

𝑡=1

 

C.3. Optimizing 𝒒(𝒄) 

The objective function with respect to 𝑞(𝑐) is 

𝐿 = 𝑐𝑜𝑛𝑠𝑡 + 𝐸𝑞[𝑙𝑜𝑔(𝑝(𝑦|𝜃, 𝑐)) + 𝑙𝑜𝑔(𝑝(𝑐|𝜋)) − 𝑙𝑜𝑔(𝑞(𝑐))] 
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The first-order derivative is  

𝜕𝐿

𝜕𝑞(𝑐)
= 𝐸𝑞(𝜃)[𝑙𝑜𝑔(𝑝(𝑦|𝜃, 𝑐))] + 𝐸𝑞(𝜋)[𝑙𝑜𝑔(𝑝(𝑐|𝜋))] − 𝑙𝑜𝑔(𝑞(𝑐)) − 1 

Following the traditional variational approximation of DP, we assume only 𝐾 nonzero 

regimes for the variable 𝑐. The probability of occurrence of the sequence 𝑐 is 

𝑙𝑜𝑔(𝑞(𝑐)) = 𝑐𝑜𝑛𝑠𝑡 + 𝐸𝑞(𝜃) [∑∑𝐼(𝑐𝑡 = 𝑘) 𝑙𝑜𝑔(𝑝(𝑦𝑡|𝜃
𝑘))

𝐾

𝑘=1

𝑇

𝑡=1

]

+ 𝐸𝑞(𝜋) [∑∑∑𝐼(𝑐𝑡 = 𝑘)𝐼(𝑐𝑡−1 = 𝑖) 𝑙𝑜𝑔(𝜋𝑖𝑘)

𝐾

𝑘=1

𝐾

𝑖=1

𝑇

𝑡=1

]

+ 𝐸𝑞(𝜋) [∑ 𝐼(𝑐0 = 𝑘) 𝑙𝑜𝑔(𝜋0𝑘)

𝐾

𝑘=1

]

= 𝑐𝑜𝑛𝑠𝑡 +∑∑𝐼(𝑐𝑡 = 𝑘)𝐸𝑞(𝜃) [𝑙𝑜𝑔(𝑝(𝑦𝑡|𝜃
𝑘))]

𝐾

𝑘=1

𝑇

𝑡=1

+∑∑∑𝐼(𝑐𝑡 = 𝑘)𝐼(𝑐𝑡−1 = 𝑖)𝐸𝑞(𝜋)[𝑙𝑜𝑔(𝜋𝑖𝑘)]

𝐾

𝑘=1

𝐾

𝑖=1

𝑇

𝑡=1

+∑𝐼(𝑐0 = 𝑘)𝐸𝑞(𝜋)[𝑙𝑜𝑔(𝜋0𝑘)]

𝐾

𝑘=1

 

Similarly to Beal (2003), we use the belief propagation algorithm (Yedidia, Freeman & 

Weiss, 2001) for calculating 𝐸𝑞(𝑐)[𝐼(𝑐𝑡−1 = 𝑖)𝐼(𝑐𝑡 = 𝑘)] and 𝐸𝑞(𝑐)[∑ 𝐼(𝑐𝑡 = 𝑘)
𝑇
𝑡=1 ], which are 

needed for 𝑞(𝜃). 

Forward and backward messages can be expressed as: 

𝑚0,1(𝑐1 = 𝑘) =∑�̃�0𝑖�̃�𝑖𝑘

𝐾

𝑖=1

 

𝑚𝑡−1,𝑡(𝑐𝑡 = 𝑘) =∑𝑝(𝑦𝑡−1|𝑐𝑡−1 = 𝑖)�̃�𝑖𝑘𝑚𝑡−2,𝑡−1(𝑐𝑡−1 = 𝑖)

𝐾

𝑖=1

        𝑡 = 2,… , 𝑇 

𝑚𝑇,𝑇−1 = (𝑐𝑇−1 = 𝑘) =∑𝑝(𝑦𝑇|𝑐𝑇 = 𝑖)�̃�𝑘𝑖

𝐾

𝑖=1

 

𝑚𝑡,𝑡−1(𝑐𝑡−1 = 𝑘) =∑𝑝(𝑦𝑡|𝑐𝑡 = 𝑖)�̃�𝑘𝑖𝑚𝑡+1,𝑡(𝑐𝑡 = 𝑖)

𝐾

𝑖=1

        𝑡 = 𝑇 − 1,… ,1 

The required densities are 

𝑞(𝑐0 = 𝑘) ∝ �̃�0𝑘𝑚1,0(𝑐0 = 𝑘) 

𝑞(𝑐𝑡 = 𝑘) ∝ 𝑝(𝑦𝑡|𝑐𝑡 = 𝑘)𝑚𝑡−1,𝑡(𝑐𝑡 = 𝑘)𝑚𝑡+1,𝑡(𝑐𝑡 = 𝑘)        𝑡 = 1,… , 𝑇 − 1 

𝑞(𝑐𝑇 = 𝑘) ∝ 𝑝(𝑦𝑇|𝑐𝑇 = 𝑘)𝑚𝑇−1,𝑇(𝑐𝑇 = 𝑘) 
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𝑞(𝑐0 = 𝑘, 𝑐1 = 𝑖) ∝ �̃�0𝑘𝑝(𝑦1|𝑐1 = 𝑖)�̃�𝑘𝑖𝑚2,1(𝑐1 = 𝑖) 

𝑞(𝑐𝑡−1 = 𝑘, 𝑐𝑡 = 𝑖) ∝ 𝑝(𝑦𝑡−1|𝑐𝑡−1 = 𝑖)�̃�(𝑦𝑡|𝑐𝑡 = 𝑖)�̃�𝑘𝑖𝑚𝑡+1,𝑡(𝑐𝑡 = 𝑖)𝑚𝑡−2,𝑡−1(𝑐𝑡−1 = 𝑘)         

𝑡 = 2,… , 𝑇 − 1 

𝑞(𝑐𝑇−1 = 𝑘, 𝑐𝑇 = 𝑖) ∝ 𝑝(𝑦𝑇−1|𝑐𝑇−1 = 𝑖)�̃�(𝑦𝑇|𝑐𝑇 = 𝑖)�̃�𝑘𝑖𝑚𝑇−2,𝑇−1(𝑐𝑇−1 = 𝑘) 

where 

�̃�𝑖𝑘 = 𝑒
𝐸𝑞(𝜋)[𝑙𝑜𝑔(𝜋𝑖𝑘)] = 𝑒𝐸𝑞(𝜋)[𝑙𝑜𝑔(𝜋𝑖𝑘)] = 𝑒𝜓(�̂�𝑖𝑘)−∑ 𝜓(�̂�𝑖𝑚)

𝐾+1
𝑚=1  

𝑝(𝑦𝑡|𝑐𝑡 = 𝑘) = 𝑒
𝐸𝑞(𝜃)[𝑙𝑜𝑔(𝑝(𝑦𝑡|𝜃

𝑘))]
 

As Bishop (2006) does, we calculate: 

𝐸𝑞(𝜃) [𝑙𝑜𝑔(𝑝(𝑦𝑡|𝜃
𝑘))] = 𝐸𝑞(𝜃𝑘) [𝑙𝑜𝑔(𝑝(𝑦𝑡|𝜃

𝑘))]

= −
1

2
𝐸𝑞(𝜃𝑘)[𝑁 𝑙𝑜𝑔(2𝜋) + 𝑙𝑜𝑔|𝛴𝑘| + (𝑌𝑡 − 𝑋𝑡𝛽𝑘)

𝑇𝛴𝑘
−1(𝑌𝑡 − 𝑋𝑡𝛽𝑘)] 

𝐸𝑞(𝜃𝑘)[𝑙𝑜𝑔|𝛴𝑘|] = ∫ 𝑙𝑜𝑔|𝛴𝑘| 𝐼𝑊(𝛴𝑘| 𝛹𝑘, 𝑑𝑘)𝑑𝛴𝑘 = −∫𝑙𝑜𝑔|𝛴𝑘|𝑊(𝛴𝑘| 𝛹𝑘
−1, 𝑑𝑘)𝑑𝛴𝑘

= −(∑𝜓(
𝑑𝑘 + 1 − 𝑖

2
)

𝑁

𝑖=1

+ 𝑁 𝑙𝑜𝑔 2 − 𝑙𝑜𝑔|𝛹𝑘|) 

𝐸𝑞(𝜃𝑘)[(𝑌𝑡 − 𝑋𝑡𝛽𝑘)
𝑇𝛴𝑘

−1(𝑌𝑡 − 𝑋𝑡𝛽𝑘)] = 𝑌𝑡
𝑇𝑌𝑡 − 2𝐸𝑞(𝜃𝑘)[𝑌𝑡

𝑇𝛴𝑘
−1𝑋𝑡𝛽𝑘] + 𝐸𝑞(𝜃𝑘)[𝛽𝑘

𝑇𝑋𝑡
𝑇𝛴𝑘

−1𝑋𝑡𝛽𝑘]

= 𝑑𝑘𝑌𝑡
𝑇𝛹𝑘

−1𝑌𝑡 − 2𝑌𝑡
𝑇𝐸𝑞(𝜃𝑘)[𝛴𝑘

−1]𝑋𝑡�̃�𝑘

+ 𝐸𝑞(𝜃𝑘)[𝛽𝑘
𝑇(𝐼𝑁⊗𝑥𝑡

𝑇)(𝛴𝑘
−1⊗1)(𝐼𝑁⊗𝑥𝑡)𝛽𝑘]

= 𝑑𝑘𝑌𝑡
𝑇𝛹𝑘

−1𝑌𝑡 − 2𝑑𝑘𝑌𝑡
𝑇𝛹𝑘

−1𝑋𝑡�̃�𝑘 + 𝐸𝑞(𝜃𝑘)[𝛽𝑘
𝑇(𝛴𝑘

−1⊗𝑥𝑡
𝑇𝑥𝑡)𝛽𝑘] 

To calculate the last term, we introduce the variable: 

𝛽𝑘
𝑐ℎ = (𝛴𝑘

−
1
2⊗ (𝛺−1 + 𝑥𝑇𝐸𝑞(𝑐)[𝐼𝑇(𝑐𝑡 = 𝑘)]𝑥 + (𝑥

++)𝑇𝑥++)
1
2) (𝛽𝑘 − 𝑣𝑒𝑐(�̃�𝑘))

= (𝐿 ⊗𝑀) (𝛽𝑘 − 𝑣𝑒𝑐(�̃�𝑘))~𝑁(0, 𝐼𝑁(𝑁𝑝+1)) 

then 

𝐸𝑞(𝜃𝑘)[𝛽𝑘
𝑇(𝛴𝑘

−1⊗𝑥𝑡
𝑇𝑥𝑡)𝛽𝑘]

= 𝑑𝑘�̃�𝑘
𝑇𝑋𝑡

𝑇𝛹𝑘
−1𝑋𝑡�̃�𝑘 + 𝐸𝑞(𝜃𝑘) [(𝛽𝑘

𝑐ℎ)
𝑇
(𝐿𝑇⊗𝑀𝑇)−1(𝛴𝑘

−1⊗𝑥𝑡
𝑇𝑥𝑡)(𝐿 ⊗𝑀)−1𝛽𝑘

𝑐ℎ]

= 𝑑𝑘�̃�𝑘
𝑇𝑋𝑡

𝑇𝛹𝑘
−1𝑋𝑡�̃�𝑘 + 𝐸𝑞(𝜃𝑘) [(𝛽𝑘

𝑐ℎ)
𝑇
(𝐼𝑁⊗ (𝑀𝑇)−1𝑥𝑡

𝑇𝑥𝑡(𝑀)
−1) 𝛽𝑘

𝑐ℎ]

= 𝑑𝑘�̃�𝑘
𝑇𝑋𝑡

𝑇𝛹𝑘
−1𝑋𝑡�̃�𝑘 + 𝑁 𝑡𝑟((𝑀

𝑇)−1𝑥𝑡
𝑇𝑥𝑡(𝑀)

−1) 
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C.4. Optimizing 𝒒(𝜷′) 

The objective function with respect to 𝑞(𝛽′) is 

𝐿 = 𝑐𝑜𝑛𝑠𝑡 + 𝐸𝑞[𝑙𝑜𝑔(𝑝(𝛽
′|𝛾)) − 𝑙𝑜𝑔(𝑞(𝛽′)) + 𝑙𝑜𝑔(𝑝(𝜋|𝛽′, 𝛼, 𝜅))] 

Following Hughes, Kim and Sudderth (2015) and Stephenson and Raphael (2015), we 

assume 𝑞(𝛽′) of the form: 

𝑞(𝛽′) =∏𝐵𝑒𝑡𝑎(𝛽𝑘
′ |�̂�𝑘�̂�𝑘, (1 − �̂�𝑘)�̂�𝑘)

∞

𝑘=1

 

The objective function is rewritten as: 

𝐿 = 𝑐𝑜𝑛𝑠𝑡 + 𝐸𝑞[𝑙𝑜𝑔(𝑝(𝛽
′|𝛾)) − 𝑙𝑜𝑔(𝑞(𝛽′)) + 𝑙𝑜𝑔(𝑝(𝜋|𝛽′, 𝛼, 𝜅))] = 𝑐𝑜𝑛𝑠𝑡 + ∑ ((𝛾 −𝐾

𝑘=1

1) 𝑙𝑜𝑔(1 − 𝛽𝑘
′ ) − 𝑙𝑜𝑔(𝐵(1, 𝛾)) − (�̂�𝑘�̂�𝑘 − 1) 𝑙𝑜𝑔 𝛽𝑘

′ − ((1 − �̂�𝑘)�̂�𝑘 − 1) 𝑙𝑜𝑔(1 − 𝛽𝑘
′ ) +

𝑙𝑜𝑔(𝐵(�̂�𝑘�̂�𝑘, (1 − �̂�𝑘)�̂�𝑘)))𝐵𝑒𝑡𝑎(𝛽𝑘
′ |�̂�𝑘�̂�𝑘, (1 − �̂�𝑘)�̂�𝑘)𝑑𝛽𝑘

′ + 𝐸𝑞[∑ (− 𝑙𝑜𝑔(𝐷(𝛼𝛽 + 𝜅𝐼(𝑖 =𝐾
𝑖=0

𝑘))) + (𝛼𝛽𝑘>𝐾 − 1) 𝑙𝑜𝑔(𝜋𝑖𝑘>𝐾) + ∑ (𝛼𝛽𝑘 + 𝜅𝐼(𝑖 = 𝑘) − 1) 𝑙𝑜𝑔(𝜋𝑖𝑘)
𝐾
𝑘=1 )] ≥  𝑐𝑜𝑛𝑠𝑡 +

∑ (− 𝑙𝑜𝑔(𝐵(1, 𝛾)) + 𝑙𝑜𝑔(𝐵(�̂�𝑘�̂�𝑘, (1 − �̂�𝑘)�̂�𝑘)) + (𝛾 − (1 − �̂�𝑘)�̂�𝑘) (𝜓((1 − �̂�𝑘)�̂�𝑘) −
𝐾
𝑘=1

𝜓(�̂�𝑘)) + (1 − �̂�𝑘�̂�𝑘)(𝜓(�̂�𝑘�̂�𝑘) − 𝜓(�̂�𝑘))) + 𝐸𝑞[(𝐾
2 + 𝐾) 𝑙𝑜𝑔(𝛼) + 𝐾(𝑙𝑜𝑔(𝜅) − 𝑙𝑜𝑔(𝛼 +

𝜅)) + (𝑙𝑜𝑔(𝛼 + 𝜅) − 𝑙𝑜𝑔(𝜅))∑ 𝛽𝑘
𝐾
𝑘=1 + 𝑙𝑜𝑔(𝛽𝐾+1) + 𝐾∑ 𝑙𝑜𝑔(𝛽𝑘)

𝐾+1
𝑘=1 ] +

𝛼 ∑ 𝐸𝑞[𝛽𝑘](∑ 𝐸𝑞[𝑙𝑜𝑔(𝜋𝑖𝑘)]
𝐾
𝑖=0 )𝐾

𝑘=1 + ∑ (∑ (𝜅𝐼(𝑖 = 𝑘) − 1)𝐸𝑞[𝑙𝑜𝑔(𝜋𝑖𝑘)]
𝐾
𝑖=0 )𝐾

𝑘=1 +

∑ ((𝛼𝐸𝑞[𝛽𝑘>𝐾] − 1)𝐸𝑞[𝑙𝑜𝑔(𝜋𝑖𝑘>𝐾)])
𝐾
𝑖=0 = 𝑐𝑜𝑛𝑠𝑡 + ∑ (𝑙𝑜𝑔(𝐵(�̂�𝑘�̂�𝑘, (1 − �̂�𝑘)�̂�𝑘)) + (𝐾 +

𝐾
𝑘=1

1 − �̂�𝑘�̂�𝑘)(𝜓(�̂�𝑘�̂�𝑘) − 𝜓(�̂�𝑘)) + (𝐾(𝐾 + 1 − 𝑘) + 1 + 𝛾 − (1 − �̂�𝑘)�̂�𝑘) (𝜓((1 − �̂�𝑘)�̂�𝑘) −

𝜓(�̂�𝑘))) + ∑ 𝐸𝑞[𝛽𝑘](𝑙𝑜𝑔(𝛼 + 𝜅) − 𝑙𝑜𝑔(𝜅) + 𝛼∑ 𝐸𝑞[𝑙𝑜𝑔(𝜋𝑖𝑘)]
𝐾
𝑖=0 )𝐾

𝑘=1 +

𝛼𝐸𝑞[𝛽𝑘>𝐾] ∑ (𝐸𝑞[𝑙𝑜𝑔(𝜋𝑖𝑘>𝐾)])
𝐾
𝑖=0   

To find the optimum, we introduce a change of variables (0 < �̂� < 1, �̂� > 0) to make 

the problem unconstrained: 

�̂�𝑠𝑢𝑏 = 𝑙𝑜𝑔 �̂� 

�̂�𝑠𝑢𝑏 = − 𝑙𝑜𝑔 (
1

�̂�
− 1) 

The objective function has the form: 
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𝐿′ = ∑ (𝑙𝑜𝑔(𝐵(�̂�𝑘�̂�𝑘, (1 − �̂�𝑘)�̂�𝑘)) + (𝐾 + 1 − �̂�𝑘�̂�𝑘)(𝜓(�̂�𝑘�̂�𝑘) − 𝜓(�̂�𝑘)) + (𝐾(𝐾 + 1 −
𝐾
𝑘=1

𝑘) + 1 + 𝛾 − (1 − �̂�𝑘)�̂�𝑘) (𝜓((1 − �̂�𝑘)�̂�𝑘) − 𝜓(�̂�𝑘))) + ∑ 𝐸𝑞[𝛽𝑘](𝑙𝑜𝑔(𝛼 + 𝜅) − 𝑙𝑜𝑔(𝜅) +
𝐾
𝑘=1

𝛼 ∑ 𝐸𝑞[𝑙𝑜𝑔(𝜋𝑖𝑘)]
𝐾
𝑖=0 ) + 𝛼𝐸𝑞[𝛽𝑘>𝐾] ∑ (𝐸𝑞[𝑙𝑜𝑔(𝜋𝑖𝑘>𝐾)])

𝐾
𝑖=0    

The first-order derivative is 

𝜕𝐿′

𝜕�̂�𝑠𝑢𝑏,𝑘
=
𝜕𝐿′

𝜕�̂�𝑘

𝜕�̂�𝑘
𝜕�̂�𝑠𝑢𝑏,𝑘

= ((𝐾 + 1 − �̂�𝑘�̂�𝑘)(�̂�𝑘𝜓
′(�̂�𝑘�̂�𝑘) − 𝜓

′(�̂�𝑘))

+ (𝐾(𝐾 + 1 − 𝑘) + 1 + 𝛾 − (1 − �̂�𝑘)�̂�𝑘) ((1 − �̂�𝑘)𝜓
′((1 − �̂�𝑘)�̂�𝑘)

− 𝜓′(�̂�𝑘))) �̂�𝑘 

𝜕𝐿′

𝜕�̂�𝑠𝑢𝑏,𝑘
=
𝜕𝐿′

𝜕�̂�𝑘

𝜕�̂�𝑘
𝜕�̂�𝑠𝑢𝑏,𝑘

= (�̂�𝑘(𝐾 + 1 − �̂�𝑘�̂�𝑘)𝜓
′(�̂�𝑘�̂�𝑘)

− �̂�𝑘(𝐾(𝐾 + 1 − 𝑘) + 1 + 𝛾 − (1 − �̂�𝑘)�̂�𝑘)𝜓
′((1 − �̂�𝑘)�̂�𝑘)

+ ∑ 𝛥𝑘𝑚 (𝑙𝑜𝑔(𝛼 + 𝜅) − 𝑙𝑜𝑔(𝜅) + 𝛼∑𝐸𝑞[𝑙𝑜𝑔(𝜋𝑖𝑚)]

𝐾

𝑖=0

)

𝐾

𝑚=1

+ 𝛼𝛥𝑘,𝐾+1∑(𝐸𝑞[𝑙𝑜𝑔(𝜋𝑖𝑘>𝐾)])

𝐾

𝑖=0

) �̂�𝑘(1 − �̂�𝑘) 

where 

𝛥𝑘𝑚 =

{
 
 

 
 −

1

1 − �̂�𝑘
𝐸𝑞[𝛽𝑚]   𝑘 < 𝑚

        
1

�̂�𝑘
𝐸𝑞[𝛽𝑚]       𝑘 = 𝑚

                0               𝑘 > 𝑚

 

 

C.5. Choosing hyperparameters 

We also optimize 𝜆𝐻  every 100 iterations by introducing a loss function, which is 

determined by prior distributions. 

In addition, the initial number of nonzero components 𝐾 in 𝑞(𝑐) is chosen to be as 

large as possible. If there exist components with a sum of probabilities less than 0.0001 after 

convergence, we remove these components and restart the algorithm.  


