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Abstract 
 
We estimated a Non-Stationary Dynamic Factor model and used it to generate artificial epi-
sodes of disinflation (permanent change in the mean inflation rate). These datasets were 
used to test the forecasting abilities of alternative underlying inflation indicators (i.e. the 
measures that capture sustained movements in inflation extracted from information in a dis-
aggregated set of price data). We found that the out of sample forecast errors of the bench-
mark underlying inflation measures (based on unobserved trend extraction) are more se-
verely affected by disinflation than the alternative simpler methods (based on exclusion or 
reweighting approaches). We also show that a Non-Stationary Dynamic Factor model may 
be employed for extraction of the unobserved trend to be used as an underlying inflation 
measure. 
 
 
Keywords: Underlying inflation, Non-Stationary Dynamic Factor model, Russia 
 
JEL classification: E31, E32, E52, C32 
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1. Introduction 
 
Bank of Russia transitioned to a fully flexible exchange rate and inflation-targeting re-

gime in 2015. Subsequently the inflation rate has declined and fluctuated closely to the target 

value of 4 percent per annum. Presumably, this disinflation may have caused a structural 

break in the inflation-generating process and affected the performance of underlying inflation 

measures. 

This paper examines the potential implications of transition to an inflation-targeting re-

gime and the subsequent disinflation for performance of the underlying inflation measures’ 

used by Deryugina et al. (2018) for Russia. For this purpose, we employ Monte Carlo experi-

ments, which are commonly applied in the analysis of trend/cycle decomposition.  There are 

several reasons in favour of using the artificial datasets to assess the performance of under-

lying inflation indicators. Firstly, this approach allows us to generate a large number of disin-

flation episodes (containing longer post-disinflation series) and to conduct a more reliable eval-

uation of the underlying inflation measures’ properties, as well as to predict the yet unobserved 

evolution of these properties. Secondly, by designing the experiments appropriately, we are 

able to isolate the effect of disinflation on the underlying inflation measures’ properties from 

the effects of other developments that affected the historical outcome. In order to generate the 

artificial datasets, we use a newly developed by Barigozzi et al. (2016a) Non-Stationary Dy-

namic Factor model that allows us to introduce appropriate structural breaks in the modelled 

price developments.  

The rest of the paper is structured as follows. In Section 2 we provide a description of 

the underlying inflation measures. Section 3 presents the Non-Stationary Dynamic Factor 

model and outlines the design of Monte Carlo experiments. In Section 4, we describe the 

formal evaluation tests and the results of the empirical and Monte Carlo analyses. Section 5 

concludes the paper. 

 

2. Underlying inflation measures 
 

Observed aggregate inflation measures can be volatile and ‘noisy’. The fluctuations 

associated with measurement errors and changes in relative prices can make it difficult for 

policymakers to accurately judge the underlying state of, and prospects for, aggregate price 

level dynamics. Therefore, estimates of ‘underlying’ (‘core’) inflation are widely used by aca-

demics and central banks, not only as a statistical measure, but also as an analytical tool. 
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The literature describes different approaches for constructing indicators of underlying 

inflation, and proposes different criteria for measuring their performance in terms of the desir-

able empirical properties of underlying inflation. One caveat is that these methods are mostly 

examined in application to advanced economies where the inflation rate is well-anchored 

around its long-term mean value. This is not the case in emerging market economies. In fact, 

for many central banks in these countries it is not uncommon to attempt bringing the inflation 

rate to a level that is lower than the observed average (in other words, achieve disinflation). 

When successful, such policy generates a structural break in the inflation-generating process 

(for example, mean shift) and affects the performance of underlying inflation measures ac-

cordingly. Obviously, if underlying inflation measures are to continue serving as analytical 

tools, the evolution of their properties in these circumstances should be examined (or, prefer-

ably, predicted). 

Our choice of underlying inflation measures is based on Deryugina et al. (2018), who 

estimate a range of measures underlying inflation in Russia and examine their performance. 

In this paper we only analyse the measures that were found to perform well historically. The 

common feature of these methods consists in utilising the cross-section of CPI components 

(see Table 2 in Annex A) to extract a relevant signal. Accordingly, we use the following ap-

proaches. 

 

2.1 Unobserved trend models  
 

The benchmark model is the specification proposed by Cristadoro et al. (2005). The 

model is designed to decompose inflation into two stationary, orthogonal, unobservable 

components — the common χjt and the idiosyncratic εjt. The common component can be 

further decomposed into long-term (𝑥𝑗𝑡
𝐿 ) and short-term (𝑥𝑗𝑡

𝑆 ) constituents by identifying low-

frequency fluctuations with periodicity above the designated threshold h: 

 

πjt = 𝑥𝑗𝑡
𝐿  + 𝑥𝑗𝑡

𝑆  + εjt            (1) 

 

The smoothed (long-term) common component can be obtained by summing up the 

waves with periodicity [−π/h, π/h] using spectral decomposition. This long-term component 

measures underlying inflation and omits idiosyncratic shocks that are not common to all CPI 

components or short-term fluctuations, which are irrelevant for monetary policy.  
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 The basic model can be written as  

 

πjt = bj(L)ft + εjt,            (2) 

 

where ft = (f1t, . . . , fqt)′ is a vector of q dynamic factors, and bj(L) is a lag operator of order s. If 

Ft = (f′t, f′t−1, . . . , f′t−s)′ the static representation of the model is 

 

πjt = λjFt + εjt,             (3) 

where bj(L)ft = λjFt.   

 

We select the number of dynamic factors to ensure that each subsequent factor 

increases the share of variance explained by the common component by no less than 10% 

(Forni et al., 2000). As a result, we use q=3 and assume s=12. 1  

Our dataset consists of the seasonally adjusted monthly increases in 44 price indicators 

(CPI and its components). The econometric estimation procedure was replicated in 

accordance with Cristadoro et al. (2005). 

We set h=24 for the benchmark model (BP-DFM). We also calculate the indicator based 

on a dynamic factor model without using bandpass filters (DFM) and also solely on the basis 

of bandpass filters with h=24 (BP). 

 

2.2 Exclusion method  
 

In order to calculate the CPI via the exclusion method, certain components which fail to 

comply with the underlying inflation definition by some criteria, are excluded from the con-

sumer goods basket. The weights of the CPI components remaining in the basket are adjusted 

to represent a total of 100% of a new basket, while the weighted average value calculated 

from the components’ indices will represent the underlying inflation index.  

The underlying inflation calculation usually excludes CPI components characterised by 

high historical volatility (such as energy or fuel prices), the expressly seasonal nature (such 

as vegetable and fruit prices) or administered nature (such as alcohol prices or the prices of 

certain social services). The volatility (seasonal or administered) of these prices indicates that 

a change occurs precisely in relative prices. 

                                                        
1 We found that using a smaller number of lags would worsen the historical properties of the indicator.  
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Following Lafleche and Armour (2006), we calculated underlying inflation excluding 22 

of the most volatile components of CPI, using the weights of the remaining 22 components in 

the consumer goods basket to construct the aggregate. The volatility of each CPI component 

is measured by the standard deviation of the monthly inflation rate of this component. 

 

2.3 Re-weighing method  
 

The approach to an underlying inflation index on the basis of re-weighing of CPI com-

ponents is similar to the exclusion method (see, for example, Macklem, 2001). This approach 

uses weights inversely proportional to the historical volatility of the monthly inflation of certain 

CPI components. 

 

2.4 Trimming method  
 

The trimming method selects only a part of the empirical distribution of the monthly 

inflation of certain CPI components for the underlying inflation index (normally, the tails of the 

distributions are cut off; see, for example, Meyer and Venkatu, 2012). The trimmed distribution, 

like the exclusion method, aims at cutting off those price changes in the CPI which may be 

related to changes in relative prices. 

We calculated the underlying inflation indicator by discarding the CPI components with 

the inflation rates below the 25th and above the 75th percentiles of the distribution in a given 

month. 

 

2.5 Domestically generated inflation 

One of the approaches to calculating an underlying inflation indicator is a concept of 

domestically generated inflation.  It is gauged by the measures determined primarily by the 

growth of domestic costs and the least sensitive to external shocks price indicators. Several 

measures can be used for this purpose such as service prices, GDP deflator or wages’ inflation 

(see Bank of England 2015 for discussion). Therefore, we have examined the performance of 

inflation of services’ prices, which may be regarded as observed-indicator domestically gen-

erated inflation.     
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3. The Non-Stationary Dynamic Factor model and de-
sign of the experiments  

 

Modelling permanent disinflation with standard statistical models is not a straightforward 

task. Firstly, we need a model can identify permanent and transitory shocks. Secondly, we 

need to jointly model the dynamics of a large set of indicators required for estimation of under-

lying inflation measures. We therefore set up a Non-Stationary Dynamic Factor model 

(NSDFM) in the spirit of Barigozzi et al. (2016a):2 

 

tttX   , tt F           (4) 

tt uLQFLLS )()1)((  ,          (5) 

         

where in (1), tX  – TN   is a matrix of de-trended observations decomposed into the sum of 

two unobservable components: t  – common component, which is a linear combination of r 

factors tF  with factor loadings  and t – idiosyncratic component. tX , tF , and t  are assumed 

to be )1(I .3  Factors tF  are driven by q  common shocks tu , d  of which have temporary fluc-

tuations, while  shocks are permanently effected by common trends. )(LS  and )(LQ  are 

rr  and qr  matrix polynomials; L  is lag operator.  

The fully-dynamic representation is as follows: 

 

ttt uLQLLSX   )()]1)(([ 1
         (6) 

 

We estimate the model following Barigozzi et al. (2016a): 

1. We extract the common factors and their loadings by principal component analysis.  

Factor loadings are extracted from ttt FX  , that is, (1) in first differences.  

The common factors are estimated as tt XNF 'ˆ1  . 

                                                        
2 This type of approach is not unprecedented. Originally, Barigozzi et al. (2016a) apply the model to a standard 
macroeconomic dataset to study the effects of monetary policy shocks and of supply shocks. Meanwhile, similarly 
to this paper, García-Cintado et al. (2015, 2016) apply an earlier version of the non-stationary DFM model pro-
posed by Bai and Ng (2004) to the cross-section of CPI components. They decompose the observed inflation 
rate series into a common and an idiosyncratic component, thus allowing identifying presence of a common 
stochastic trend driving the observed series. 
3 As in Barigozzi et al. (2016a) we assume that tX , tF , and t  are I(1) even though some of its coordinates may 

be I(0). For Monte Carlo experiments, we set t  ~ I(0) for simplicity. Setting t  ~ I(1)  does not change the results 

of the exercise. 
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2. We then consider a VECM with dqrc  cointegration relations for the common fac-

tors. tttt wFGFF   111' , where the matrix of cointegration vectors   is estimated by 

Johansen approach;   and 1G  are regression coefficients. A VECM can be rewritten as a VAR 

process tt wFLA )( . Residuals tw  are transformed to q primitive shocks tu : tt Kuw   , where 

K is denoted as rescaled first q  eigenvectors of the sample covariance matrix of the tw  (for 

instance, see Stock and Watson 2005, Bai and Ng 2007, Forni et al. 2009).   

3. We choose orthogonal qq  identification matrix H to achieve the conditions under 

which   common trends are detected among  q  common shocks.  

We set a number of factors 7r , common shocks  4q , and common trends 2  

based on the results of different tests for the number of factors determination (Bai and Ng 

(2002), Hallin and Liška (2007), Bai and Ng (2007), Barigozzi et al. (2016a) (see Annex C). 

 

3.1 Design of experiment 
 

Bank of Russia transitioned to a fully flexible exchange rate and inflation-targeting re-

gime in 2015. Subsequently, the inflation rate has declined and fluctuated closely to the target 

value of 4 percent per annum. Presumably, these developments represent permanent disin-

flation. The goal of our exercise is to artificially increase the number of disinflation episodes 

similar to the observed rates available for analysis. Also, we use the artificially created obser-

vations to extend the dataset and possibly predict the yet unobserved evolution of the under-

lying inflation measures’ properties. Note that since we are interested in identifying the effect 

of disinflation on underlying inflation measures, we want to eliminate the impact of large fluc-

tuations in the inflation rate that happened immediately prior to disinflation in early 2015 (see 

Figure 1).   

For this purpose, we estimate the NSDFM for the 43 components of the aggregate CPI 

(see Table 2 in Annex A) from February 2002 to September 2014 (T = 152 months): 

 

ittiit Fx     ,,...,1,,...,1 TtNi          (7) 

tt KHuFLA )(            (8) 

We began generating artificial observations in September 2014 using estimated param-

eters HKLAi
ˆ,ˆ),(ˆ,̂ . The artificial series are 15-years long. We ran the simulations until we 

obtained 100 replications with the following properties: 
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1. During the first 12 months the innovations are driven by )*,0(~ 2

qut INu  . 

Over the next 36 months, we introduce a negative drift )*,1(~ 2

qut INu   that represents dis-

inflation. In the remaining periods )*,0(~ 2

qut INu  , where 32 u .4 

2. We select only those simulations for which the inflation rates of the majority of CPI 

components (more than 37 of 43 components) are, on average, lower than the actual data 

(the last 10 years of simulations are compared with the last 10 years of actual data). Thus, we 

only analyse the cases where disinflation occurred across most of the cross-sections. 

3. We calculate the aggregate CPI for the simulated component using the respective 

weights of 2018. We select only those simulations where the CPI year-over-year growth rate 

does not fluctuate outside the 0 percent to 10 percent band starting from 2021. This represents 

actual inflation being anchored around the Bank of Russia’s target. Each idiosyncratic compo-

nent is drawn from a normal distribution )1,0(~ Nit , rescaled so that it accounts for a quarter 

of the total variance. 

The distribution of obtained artificial CPI growth rates is presented in Figure 1. The 

obtained artificial datasets represent the disinflation episodes with a magnitude similar to ob-

served instances, but with different short-term dynamics. We use these datasets for Monte 

Carlo experiments as described in Section 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        
4 The choice of  32 u  allows us to keep variance of the simulated CPI close to the variance of the actual data. 
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Figure 1. Actual CPI inflation and distribution (median, min and max) of artificial year-

over-year CPI growth rates (%) 

 

 

 

 

4. Evaluating the properties of underlying inflation 
measures 

 

Arguably, the most valuable and clearly defined criterion for assessing the quality of 

underlying inflation measures is the ability to forecast actual inflation (see, for example, 

Wynne, 1999; Mankikar and Paisley, 2004; Amstad et al., 2014). We choose to assess this 

property for the 12-month horizon (which is arguably relevant for monetary policy).  

We proceed by examining the evolution of forecasting performance of underlying infla-

tion measures during the observed and artificial episodes of disinflation. For that purpose, we 

calculate our underlying inflation measures (that is, estimate the models, determine the ex-

cluded components or the weights for re-weighting, and so on) in pseudo-real time using five-
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year-long rolling sub-samples of data.5 We employ two alternative approaches to evaluate the 

usefulness of these measures for inflation forecasting. 

We use the standard regression model (see, for example, Lafleche and Armour, 2006) 

to assess the forecasting properties of underlying inflation: 

 

t + 12 – t + U
t– t)+ ut+12,                                                                                                                                      (9) 

 

where t are the annual CPI growth rates, and the U
t are annual underlying inflation growth 

rates. 

The regression is estimated recursively over the expanding time sample and 12-

months-ahead forecasts are produced using alternative underlying inflation measures. The 

results are reported in terms of the root mean squared errors (RMSE) of these forecasts. In 

addition to testing set underlying inflation measures, we also estimate the forecast errors using 

the currently observed CPI rate as a forecast for the CPI rate 12 months ahead (RW). 

An alternative, more demanding approach implies setting and  in the 

forecasting equation without estimation (essentially treating calculated underlying measure as 

a forecast of future CPI rate): 



t + 12 – t U
t– t)+ ut+12                                                                                                                                                   (10) 

 

We report both measures of forecasting accuracy, but regard direct forecasts as the primary 

approach to evaluation. 

 

4.1 Historical analysis 

 

Firstly, we evaluate the historical performance of underlying inflation by estimating the 

RMSEs over the 2005–2018 time sample. The results obtained using both ‘regression-based’ 

(equation 9) and ‘direct’ (equation 10) approaches are reported in Table 1. In line with findings 

by Deryugina et al. (2018), the BP-DFM appears to be the best performing model. 

 

 

 

                                                        
5 We found that using a recursively expanding time-sample does not improve the performance of the underlying 
inflation measures. 
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Table 1. Cumulative RMSEs over 2005–2018 time sample 

 

Regression-based Direct 

Measure RMSE Measure RMSE 

BP-DFM 0.037 BP-DFM 0.039 

Services’ inflation 0.039 BP 0.043 

BP 0.041 Trimming 0.043 

Re-weighting 0.042 RW 0.043 

Trimming 0.042 DFM 0.043 

DFM 0.042 Exclusion 0.043 

Exclusion 0.042 Re-weighting 0.044 

RW 0.043 Services’ inflation 0.049 

 

We proceed by examining the changes in the performance of the underlying inflation 

measures after the disinflation. For this purpose, we calculate the RMSEs over three-year-

long rolling sub-samples. The results are reported in Figures 2 and 3.6 The results indicate 

that the RMSEs of all measures have deteriorated significantly in the 2014–2016 sub-sample 

(for all indicators, the errors are significantly higher than the average for 2005–2018). The 

performance of BP-DFM-based measures was still good in relation to the competitors, alt-

hough the services’ inflation indicator outperformed the benchmark. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        
6 The performance of measures estimated using exclusion, re-weighting, and trimming approaches proved to be 
similar. Therefore, for illustrative purposes, the respective RMSEs were labeled ‘Other’ in Figures 2–5.  



DISINFLATION AND RELIABILITY OF UNDERLYING INFLATION MEASURES SEPTEMBER 2019 14 

Figure 2. RMSEs of regression-based forecasts estimated over three-year-long sub-

samples 

 

Figure 3. RMSEs of direct forecasts estimated over three-year-long sub-samples 
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Note that, as discussed in Section 3.1, these results are determined not solely by dis-

inflation, but by all of the events that took place in 2015 in Russia (most notably the drop in oil 

prices and the ensuing ruble depreciation and temporary acceleration of inflation).  

 

4.2 Monte Carlo experiments 

 

We proceed by estimating the RMSEs for the datasets extended with artificial observa-

tions (generated as described in Section 3.1).7 The RMSEs are averaged across all datasets. 

The results are presented in Figures 4–5. As expected, our exercise predicts that the 

performance of all measures will deteriorate during disinflation, but not as badly as observed 

empirically. In fact, for the BP-DFM, the highest values of the RMSEs obtained over the artifi-

cial sample is still lower than the average error in 2005–2018. We therefore conclude that the 

deterioration of empirical RMSEs was mostly driven by factors unrelated to disinflation. 

Interestingly, and in contrast to the empirical data, the BP-DFM is not supposed to re-

main the best performing indicator. In fact, the regression-based forecasts obtained with the 

BP-DFM are predicted to be the worst among all the models during the first three years after 

disinflation, and direct forecasts are predicted to be the worst from the third to the fifth years 

after disinflation.  

As regards the competitor models, the Monte Carlo experiments indicate no clear rec-

ommendation for the regression-based exercise. As for direct forecasting, the measures based 

on exclusion and reweighting methods produced the best direct forecasts over the period of 

three to six years after the disinflation. At least partially, this result may be attributed to the 

systematic negative bias of the forecasts based on these measures (see median errors pre-

sented in Figure 6) that accidentally helps to improve the forecasts during disinflation.8 Con-

trary to the empirical case, the services’ inflation does not outperform the competitors. Argua-

bly, this means that the relatively good historical performance of this indicator was due to its 

ability to filter out temporary inflationary shocks in early 2015. Another notable finding is that 

the simpler methods of unobserved trend extraction (BP and DFM) generally outperform the 

                                                        
7 Admittedly, under this setup, the evolution of the performance of alternative underlying inflation measures over 
the artificial sample is still, at least partially, determined by historical developments. Therefore, in Annex B, we 
cross-check our findings using fully artificial datasets. 
8 This finding is confirmed by the analysis presented in Annex B. This observation indicates that in Russia, volatile 
components of CPI, on average, have higher inflation rates.  
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BP-DFM on the artificial sample. In six to seven years after the disinflation, the RMSEs of the 

underlying alternative converge and the BP-DFM’s performance improves. 

Figure 4. RMSEs of regression-based forecasts estimated over three-year-long sub-

samples 

 

Figure 5. RMSEs of direct forecasts estimated over three-year-long sub-samples 
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Figure 6. Median errors of direct forecasts  

 

 

4.2 NSDFM-based measure of underlying inflation 

 

In the previous sections we have used the NSDFM as a data generator for Monte Carlo 

analysis, but it may be appropriate to employ this model to estimate underlying inflation when 

the actual inflation rate is presumably affected by permanent shocks.  

We estimate the NSDFM as described in Section 3 for the dataset containing the de-

trended indicators of the aggregate CPI and its 43 components over the recursively expanding 

time sample of 2002–2018 (starting with the first 24 months). For each iteration, we calculate 

the underlying inflation measure by extracting two common trends ( ) in the aggregate CPI 

dynamics and add the extracted trend during the data transformation. The year-over-year 

growth rate is calculated as the product of 12 monthly underlying inflation rates. 

We test the historical performance of the NSDFM-based measure as described in Sec-

tion 4.1. The results are presented in Figure 7 in comparison with the benchmark BP-DFM 

measure. The NSDFM-based measure performed as good as (or slightly worse) than BP-DFM 

prior to disinflation and performed better in direct forecasting. Admittedly, these are preliminary 

results, as we do not have enough data on post-disinflation developments. Nevertheless, we 

believe that the NSDFM approach may be promising in such circumstances. 
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Figure 7. RMSEs estimated over three-year-long sub-samples 

 

 

5. Conclusions 
 

Bank of Russia transitioned to a fully flexible exchange rate and inflation-targeting re-

gime in 2015. Subsequently the inflation rate has declined and fluctuated closely to the target 

value of 4 percent per annum. Presumably, this disinflation may have caused a structural 

break in the inflation-generating process and affected the performance of underlying inflation 

measures. 

We conducted the empirical analysis and confirmed that the ability of underlying infla-

tion measures to forecast actual inflation deteriorated after 2015. However, based on the re-

sults obtained from the Monte Carlo experiments, we believe that this deterioration was mainly 

due to temporary rapid acceleration of inflation in early 2015, after ruble exchange rate depre-

ciation. 

Other findings of the Monte Carlo analysis indicate that the benchmark underlying in-

flation measures (based on unobserved trend extraction) are more severely affected by disin-

flation than the alternative simpler methods. The simple indicators based on exclusion and re-

weighting approaches may be the preferable measures of underlying inflation during disinfla-

tion. 

Alternatively, a more complex Non-Stationary Dynamic Factor model may be employed 

for extraction of the unobserved trend to be used as an underlying inflation measure. 
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Annex A 

Table 2. CPI components in the cross-section 

Meat Products 

Fish Products 

Oils and Fats 

Milk and Dairy Products 

Cheese 

Eggs 

Sugar 

Confectionery 

Tea and Coffee 

Bread and Bakery Products 

Macaroni and Grain Products 

Fruit and Vegetable Products 

Alcoholic Beverages 

Public Catering 

Clothing and Linen 

Furs and Fur Goods 

Knitted Wear 

Footwear 

Detergents and Cleaners 

Perfumes and Cosmetics 

Fancy Goods 

Tobacco 

Furniture 

Electrical Goods and Other Household Devices 

Publishing and Printing 

TV and Radio Merchandise 

Computers 

Communications Equipment 

Construction Materials 

Passenger Cars 

Gasoline 

Medical Goods 

Household Services 

Passenger Transport Services 

Communications Services 

Housing and Public Utility Services 

Education Services 

Culture Organisations Services 

Medical Services 

Foreign Tourist Services 

Other Food Products 
Other Non-Food Products 
Other Services 

 
All data are in monthly growth rates and seasonally adjusted using TRAMO/SEATS. 
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Annex B 

The results presented in Section 4.2 were obtained using the combined datasets that 

contained both historical and artificial data. We cross-check our findings by conducting the 

Monte Carlo experiments over fully artificial datasets. For this purpose, we replace the histor-

ical data observed prior to disinflation with a 10-year-long artificial series. The series are gen-

erated using the NSDFM model described in Section 3. We select only those simulations 

where the CPI year-over-year growth rate does not fluctuate outside the 10 percent to 20 

percent band. The disinflation and post-disinflation periods are generated as described in Sec-

tion 3.1. The resulting distribution of CPI inflation rates are presented in Figure 8. 

 

Figure 8. Distribution (median, min and max) of artificial year-over-year CPI growth 

rates (%) 

 

We proceed by conducting the Monte Carlo experiments as described in Section 4.2 

and calculate the forecasts’ errors for alternative underlying inflation measures (Figures 9–

11). The findings reported in Section 4.2 are generally confirmed. The benchmark underlying 

inflation measure (based on the BP-DFM model) is more severely affected by disinflation than 
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the alternative simpler methods. The simple indicators based on exclusion/re-weighting ap-

proaches, as well as simpler unobservable trend models, may be the preferable measures of 

underlying inflation during disinflation (although the former have systematically biased errors). 

 

Figure 9. RMSEs of regression-based forecasts estimated over three-year-long sub-

samples 
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Figure 10. RMSEs of direct forecasts estimated over three-year-long sub-samples 

 
 

 
 

Figure 11. Median errors of direct forecasts  
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Annex C 

We use Bai & Ng (2002) criteria to identify the number of static factors with maximum num-
ber of factors kmax=10, and penalty functions p1, p2, p3, p4. 
 
Table 3. Results of Bai & Ng (2002) criteria (number of static factors) 

 

  IC PC 

p1 4 9 

p2 4 8 

p3 10 10 

p4 1 4 
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We apply Hallin and Liška (2007) information criteria to determine the number of common 
shocks q , and Barigozzi et al. (2016a) for common trends  , with penalty functions pp1, 

pp2, pp3, pp4; large and small windows are 0.1 and 0.01; the number of replications are 
1000. 
 
Table 4. Results of Hallin and Liška (2007) criteria (the number of common shocks and its 

percentage of simulations according with different penalty functions and window sizes)  

q 
Large Window Small Window 

pp1 pp2 pp3 pp4 pp1 pp2 pp3 pp4 

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1 100.0 100.0 100.0 100.0 73.7 83.2 80.6 81.3 

2 0.0 0.0 0.0 0.0 21.3 16.2 17.9 17.7 

3 0.0 0.0 0.0 0.0 5.0 0.6 1.5 1.0 

 
 
Table 5. Results of Barigozzi et al. (2016a) criteria (the number of common trends and its 
percentage of simulations according with different penalty functions and window sizes) 

τ 
Large Window Small Window 

pp1 pp2 pp3 pp4 pp1 pp2 pp3 pp4 

0 2.8 3.5 1.7 2.5 0.3 0.4 0.3 0.4 

1 86.3 88.7 81.0 85.2 35.4 39.6 36.9 37.9 

2 10.9 7.8 17.3 12.3 48.0 47.8 48.9 48.7 

3 0.0 0.0 0.0 0.0 16.3 12.2 13.9 13.0 
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