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Motivation

» Evidence on Rising Markups: across US sectors, especially in
the retail sector (e.g. De Loecker et al. [2020, QJE] , Philippon
[2019)).

» Trend in markups affects important stylized facts
Eggertsson et al. [2021, JME] link markups to wealth-to-income
ratio, Tobin’s Q, real interest rate, and investment-to-output
ratio (also see Syverson [2019, JEP))

» Is there a connection between markups and the business
cycle? Stroebel and Vavra [2019, JPE] present evidence that
retail prices react to household wealth, suggesting an effect on
markups.

» Little higher-frequency empirical evidence on
pro-cyclical market power Nekarda and Ramey [2020, JMCB]|
present macro-level time series evidence
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Methodology

» Estimate elasticity of demand faced by stores: local
elasticity is estimated based on observations resulting from
market equilibrium outcomes.

» Our Approach: Use panel-IV to estimate local average
market-year-category elasticity.

1. Implement Hausman [1996] price IV by pairing geographically
close markets.
2. Use time fixed effects to control for common demand shocks.

3. Estimate price elasticities at the less-noisy product-category level.

» Use Lerner index of markups _%;: corresponds to store’s
optimal price setting strategy in equilibrium [Lerner, 1934,

DellaVigna and Gentzkow, 2019]
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Preview of Results

» New estimates of trend and business cycle variation in
markups: consistent with previous work on markup trend
estimated from cost data.

1. FElasticity: downward trend (0.04/year) + increase after recessions
(0.16/year).

2. Implied Markups: upward trend (4%/year) + decrease after
recessions (14% /year).

» New cross-sectional evidence on effects of income on
markups

» Important implications for policy: suggests transmission
mechanism of monetary policy through effect on markups.
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Previous Work on Sector-wide Rising Markups

» Supply-side Evidence: cost minimization; firm-level
accounting data; many sectors; higher in retail sector De Loecker
et al. [2020].

» Demand-side Evidence: profit maximization; scanner data of
store-product sales; food retail sector.

1. Structural approach (BLP): analyze generally small sets of both

food and nonfood products [De Loecker and Scott, 2016, Brand,
2021, Dopper et al., 2022].

2. Our Paper: (i) panel-IV; (ii) all food products; (iii) sizable &
significant markup variations around business cycles; and (iv)
longer sample period.
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Elasticity: Data

» Retail Scanner Data: 2001-2020.
1. IRI, 2001-2012 (Bronnenberg et al., 2008).
2. NielsenIQ, 2006-2020 (the Kilts Center for Marketing at

UChicago).

3. Weekly product quantities and revenues at the store level for each

barcode (UPC).

» Food Products, Food
Stores

1. IRI: 16 categories.

2. Nielsen: 60 categories.

» Examples: cereal.

Cereal

Cheerios Special K

Category-level statistics cES8 P
. Cheerios ~ ofaice
IRI Nielsen [ORYATT R 0ATVEAL SQUARES
mean mean o <
#UPCs/year 2,097 4,412
#UPCs/year-market 541 1,052
#UPCs/year-market-store 214 339
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Paired neighboring markets in major US regions

A market, defined by IRI, consists of one or several adjacent counties.
Among 50 IRI markets, select 26 relatively large ones as 12 close pairs.
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Elasticity: panel-IV approach

» Within each market(m)-category(c)-year(t) pair:
log(‘]v,s,w) = _em,c,tlo.g(pv,s,w) +UPC, + stores + week,, + Ev,s,w)

where ¢, 5. and p, 5. denote the quantity and (imputed) price
of product v sold by store s in week w.

1. Price IV: the quantity-weighted average of log weekly prices of the
same product sold in the paired market(s).

2. Fized effects: various demand effects.
(i) weeky,: local demand shocks + prices of other categories;
(ii) UPC,: local preferences over products;
(iii) stores: local preferences over stores.

3. Clustered standard errors: at store and week levels.
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Elasticity: cleaned estimates

» Cleaned elasticity estimates: IRI & Nielsen, 25,100/27,500
(91%).
1. Drop: weak IV + negative estimates.
2. Trim: upper and lower 1% by year.
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> Distribution: 5% significantly below 1 while 10% below 1.

» Precision: 95% standard errors below 0.4.
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Elasticity: differences across categories and markets

» IRI elasticity estimates in 2010.

|
sugar substitute :»—--—«
milk | | ——— —.———
margarine butter | | - —-——————
mustardécketchup || — ——
mayonnaise | | — —
yogurt :
soup | 1 —— ——
salty snacks | | — ———
hotdog : ———
carbonated beverages | | —— ———
coffee | |
frozen dinners&entrees |
cold cereal | | —— ———
spaghetti&italian sauce :
peanut butter | 1 — ——
frozen pizza | | — ———
} . r :
1 2 3 4

excludes outside values

> Cereal: mean of 2.5 for 2007-2010 in LA, close to mean of 2.2 estimated
by Richards and Hamilton [2015, REStat].

> Yogurt: [1.0, 4.2] for 2001-2010 in 26 markets; Hristakeva [2022, JPE]
has a mean estimate of 4.0 for all markets during the same period.
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Elasticity: Time Variation
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Levels of IRI estimates shifted to match mean Nielsen estimates in

the overlap sample period. Quantiles reported: 25% and 75%
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Impute Markup from Elasticity

» Calculate average elasticity: compute good-weighted
elasticity at the market level.

» Monopolistic Pricing: set price to maximize profit (e.g.,
DellaVigna and Gentzkow [2019, QJE]).

e
e—1"

L. Markup: -2 =

2. Cumulative percentage change: In(;*5) — ln(etetil).
0
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Time Variation in Makrups
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Elasticity: trend and cyclical decomposition

» Panel regression

em.ct = trendy + yeary + datag x market,, x categorye + Um c.t,

with the inverse of elasticity s.e. as weights and w,, ; clustered

at the market level.
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Elasticity and Implied Markup: trend and cyclical

variation

Trend and Cyclical Variation in Elasticity and Implied Markup.

elasticity  markup
Trend
average annual change, 2001-2020  -0.035***  3.9%***
(0.004)  (0.7%)
Cyclical changes
from 2001 to 2002 0.286***  -15.1%***
(0.052)  (2.8%)
from 2008 to 2009 0.100%**  -8.0%***
(0.013)  (1.0%)
from 2017 to 2018 0.103*** -17.8%***
(0.025)  (4.3%)

Note: Standard errors are in parentheses. *p < 0.05, **p < 0.01, ***p <

0.001.
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Driving Factors of Elasticities: data & identification

» Market-year factors X, ;: county-level raw data; take In and
then weight by population.

real GDP per capita/unemployment rate/real housing price/population/
econ dependency ratio/No. of grocery establishments per 10k residents.

» Use fixed effects regression weighted by elasticity s.e.
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Driving Factors of Elasticities: estimation results

dependent variable: elasticity

(1) () 3)
explanatory variables main variety balanced
real GDP per capita -0.85%**  -0.82***  -0.90***

(0.16) (0.15) (0.14)
unemployment rate 1.49 1.51 1.46

(1.25) (1.20) (0.98)
cum. change in real housing price  0.40*** 0.38*** 0.29***

(0.13) (0.11) (0.09)
economic dependency ratio 0.35 0.31 -0.03

(0.38) (0.33) (0.26)
population -1.20** -1.12%* -0.73***

(0.56) (0.42) (0.26)
grocery establishments per capita -0.02 -0.05 -0.13

(0.17) (0.14) (0.11)
No. of UPC's per category 0.10

(0.12)
market X category FE YES YES YES
year FE YES YES YES
adj.R? 0.337 0.341 0.405
N 25,062 25,062 19,746

Note: (1)-(3) are OLS regressions with the reciprocals of elasticity variances as
weights. Standard errors of coefficients, clustered at the market level, are listed
in parentheses. *p < 0.05, **p < 0.01, ***p < 0.001.
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Conclusion

» Implement a panel-IV approach to precisely estimate own-price
elasticities of demand; aggregate at the year-market-category
level.

» Trend and cyclical variation in own-price elasticities of demand
imply rising and pro-cyclical markups in the food retail sector.

» Economic factors, such as real GDP per capita, drive these
changes.
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Elasticity: OLS versus IV

IRI sample: attenuation bias of OLS estimates relative to IV’s.
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