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Abstract

We illustrate the ability of the stochastic gradient variational Bayes algorithm, which is a
very popular machine learning tool, to work with macrodata and macromodels. Choosing two
approximations (mean-field and normalizing flows), we test properties of algorithms for a set of
models and show that these models can be estimated fast despite the presence of estimated
hyperparameters. Finally, we discuss the difficulties and possible directions of further research.

JEL-classification: C11, C32, C32, C45, E17.
Keywords: Stochastic gradient variational Bayes, normalizing flows, mean-field approximation,

sparse Bayesian learning, BVAR, Bayesian neural network, DFM.
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Introduction

Bayesian modelling is a popular approach for estimating macroeconomic models due
to regularisation properties and the ability of taking into account epistemic and aleatoric
uncertainties. It is one of the main tools for the inference in vector autoregressions (see
Litterman (1980), Doan, Litterman and Sims (1984), Sims (1993), Villani (2009), Banbura,
Giannone and Reichlin (2010), Koop and Korobilis (2010), Giannone, Lenza and Primiceri
(2015)), dynamic factor models (see Otrok and Whiteman (1998), Kim and Nelson (1998),
Aguilar and West (2000), Blake and Mumtaz (2012)), dynamic stochastic general
equilibrium models (see Smets and Wouters (2003, 2007), Fernandez-Villaverde and Rubio-
Ramirez (2007), Justiniano and Primiceri (2008), Herbst and Schorfheide (2015)), agent
based models (Grazzini, Richardi and Tsionas (2017), Gatti and Grazzini (2018), Lux (2018)
among others.

Posterior distribution plays a key role in Bayesian inference, but unfortunately in
most cases it is not possible to sample directly from or integrating over it. Usually, this
problem is solved by using approximations. There are two most popular ways to
approximate posterior distributions: Monte Carlo approximation and direct approximation.
The first group, for instance, includes Gibbs Sampling (see Casella and George (1992)),
Importance Sampling (see Owen (2013)), Metropolis-Hastings (see Chib and Greenberg
(1995)), Hamiltonian Monte Carlo (see Neal (2011)), No-U-Turn Sampling (see Hoffman and
Gelman (2014)), Sequential Monte Carlo (see Doucet, De Freitas and Gordon (2001))
algorithms and the second group contains MAP estimation, Expectation Propagation
algorithm (see Minka (2001)), Variational Bayes estimation (see Wainwright and Jordan
(2008)), a-divergence (see Li and Turner (2016)) among others. Monte Carlo algorithms
(asymptotically) sample from exact posterior that imply accuracy, but direct methods are
faster in many tasks. Monte Carlo (MC) estimation methods are widely used in
macroeconomics! in opposite to direct approximations (except for MAP estimation). To the
best of our knowledge, despite the success in other fields there is only small fraction of
papers that uses direct approximations (see Korobilis (2017), Koop and Korobilis (2018),
Seleznev (2018)) for macromodelling.

To illustrate usefulness and partially fill this gap, we apply the Variational Bayes
algorithm (VB) for inference in three classes of models which are of great interest in
macroeconomic society in recent years: Bayesian vector autoregression with sparse priors
and t-Student errors (t-Student sparse BVAR), Bayesian neural network (BNN) and dynamic
factor model (DFM). We choose these models to show the flexibility of the VB approach. In
all exercises we ask the method to estimate posterior simultaneously maximising marginal
likelihood with respect to hyperparameters?2, which is a very challenging task for MC
methods. BVAR exercise shows the applicability of the method to a very popular class of
linear models, but without standard restrictions such as Gaussian noise. BNN exercise
demonstrates the ability of method to work with highly non-linear models where efficient

1 For example, Gibbs Sampling: BVAR (see Karlsson (2012)) and DFM (see Blake and Mumtaz (2012)); Metropolis-
Hastings algorithm: DSGE (see Herbst and Schorfheide (2016)); Hamiltonian Monte Carlo: Cointegrated BVAR (see
Marowka, Peters, Kantas and Bagnarosa (2017)); No-U-Turn Sampling: SVMA (see Plagborg-Moller (2016));
Sequential Monte Carlo: DSGE (see Herbst and Schorfheide (2015)) and ABM (see Lux (2018)).

2 We treat variance of prior for each coefficient and degrees of freedom for t-Student distribution as hyperparameters.
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MC algorithms, such as Gibbs Sampling, are infeasible. DFM exercise shows the ability of the
VB method to estimate state-space models (models with temporal dependencies) that can
also be useful for ABM and DSGE models. The direct measures of accuracy cannot be directly
applied for models described above due to the absence of closed form marginal likelihood
expression, so we additionally run an experiment with classical sparse Bayesian learning
regression.

The traditional VB approach restricts families of posterior and approximation densities
because of the need to have closed form or simply solved (optimised) steps3 and is not
convenient for direct application in some of described earlier tasks. To overcome these
difficulties, we use two popular machine learning tricks: stochastic gradient estimation
procedure and normalizing flow density estimation.

The stochastic gradient estimation procedure for VB algorithm or stochastic gradient
variational Bayes (SGVB) was introduced in Kingma and Welling (2014) and is popular in a
wide range of algorithms including variational autoencoders (see Kingma and Welling
(2014)), variational dropout (see Kingma, Salimans and Welling (2015), Gal and
Ghahramani (2016), Molchanov, Ashukha and Vetrov (2017)), importance weighted
autoencoders (see Burda, Grosse and Salakhutdinov (2015)), Hamiltonian variational
inference (see Salimans, Kingma and Welling (2015)), Bayesian compression (see Louizos,
Ulrich and Welling (2017)), and variational sequential Monte Carlo (see Naesseth,
Linderman, Ranganath and Blei (2018)). It helps to optimise evidence lower bound (ELBO)
for a wide variety of posterior, but requires the ability of fast and accurate sampling from
approximate density. This requirement usually restricts the family of approximate densities.

Normalizing flows (NF) is a transformation of random variables that forms a rich
family of densities. In machine learning, it is often used as an alternative for generative
adversarial networks (see Goodfellow, Pouget-Abadie, Mirza, Xu, Warge-Farley, Ozair,
Courville and Bengio (2014)) or variational autoencoders (see Kingma and Welling (2014))
for generation of objects similar to data (see Dinh, Krueger and Bengio (2014), Dinh, Sohl-
Dickstein and Bengio (2016), Kingma and Dhariwal (2018)). Rezende and Mohamed (2015)
propose use of NF transformation as a family of approximations for variational inference and
mitigation of the problem of restriction for VB approximations. It increases computational
complexity, but in practice still works fast relative to MC methods.

We describe SGVB and NF in more detail in Section 2 and Section 3. Section 4 is devoted
to details of the models. Results are presented in Section 5. In Section 6 we discuss results
and further directions of work. Section 7 concludes.

Stochastic Gradient Variational Bayes

VB algorithm maximises lower bound of logarithm of marginal likelihood with
respect to approximate density and hyperparameters:

logp(yIx, 9) = log [ p(y, 61x,9)d6 = log [PUELDRC) ggyap (1)
> [(logp(v,6lx, ) —logq(6))q(6)d6 = 2)

3 Probably it is the reason of small popularity of this method among macroeconomists.
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logp(ylx, ) — [(log q(8) —logp(Bly,x, 9))q(6)d6 = (3)
logp(ylx, @) — KL(q(0)||logp(@ly,x,9)) = L(q, ) (4)

where y,x,¢,0 are sets of dependent variables, regressors, hyperparameters and
parameters; q(0) is approximate density; p(y|x, ¢) and L(q, ¢) are logarithms of marginal
likelihood and its lower bound; KL(q @) ||p8ly, x, <p)) is a KL divergence.

Traditional VB uses an iterative procedure that assumes q(8) to be a product of block
densities (see Ormerod and Wand (2010), Blei, Kucukelbir and McAuliffe (2017)) and
simple form for p(8|y, x, ¢) implying closed form for each step. SGVB allows for optimising
L(q, @) directly with stochastic optimization. It utilises the fact that [(logp(y,8|x, ¢) —
log q(0))q(6)d6 and its derivatives can be estimated via samples. For a parametric family
qy(6) we get:

Vy ([ (logp(y, 61x, ) —log q,,(6))qy(6)d6)
= [ Vylog qy(6) (logp(y,81x, @) —log gy (6))qy, (6)d6
+ [ Vy(logp(y, 01x, ) — log q,,(6))qy,(6)d6
~ =T, Vy log qy (8)) (log p(y, 6ilx, ) — log 4, (6)))
+= 3, Vy (logp(y, 6:lx, @) — log ,,(6))
0i~q¢(9),i =1,..,N

This estimator has a large variance in practice, so Kingma and Welling (2014)
proposed a reparameterization trick*. Distribution q,,(8) is replaced with q(gw (e)), where

e~p(e).p(e) does not depend on parameters and the new estimator can be written in the
following form:

Vy ([ (logp(y, 81x, ) — log gy () ) gy, (6)d6)
= Vy (J (10gp (3, 9y (e)|x, @) —logq (gy(e))) ple)de)
= (J vy (logp(y, gy (e)|x, ) —logq(gy(e)))p(e)de) (5)
~ =Y Uy (log p(y, gy (e, ) — log a(gy (e))) (6)

e~p(e),i=1,..,N

This estimator is unbiased, so under the appropriate schedule, learning rates can be
used in stochastic gradient algorithm or its extensions (see Kushner and Yin (2003)).

Mean-field and Normalizing Flows Approximation

In this paper, we approximate the posterior with Gaussian mean-field and NF
approximation. The former has the form:

4 It cannot be applied in all cases.
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qy(0) = qy,(01)qy,(0%) ...qy,(6°)
Qy, (0D ~pug +04N(0,1), d=1,..,D

where D is the dimensionality of the space of parameters, and y; are parameters of dth
component of approximate distribution.
The latter uses a chain of invertible transformations:

0= gw(e) = ftfx (fwx 1 ( (f$1 (e)) )>

and the identities:
-1
a(6) = |detﬁ| a(e)

a9u(@) ™ o oy

|dt

ary,

det
fip_y

_ Ay
=q(e) |det "

Hg:z

where K is the number of transformations applied to initial random variables e, and ), are
parameters of kth transformation.

The second term in (6) in this case is equal to:
1 &
Nz Vy (— logq (g¢(el) Z Vy (— log q(e;) +log Z log )

i=1

The main difficulty of this approach is choosing the functional form of transformation
to be flexible enough and computationally efficient. There is a number of approaches in the
literature to construct such transformation: non-linear independent component estimation
structure (see Dinh, Krueger and Bengio (2014)), planar and radial flows (see Rezende and
Mohamed (2015)), real-value non volume preserving transformation (see Dinh, Sohl-
Dickstein and Bengio (2016)), inverse autoregressive flows (see Kingma, Salimans,
Jozefowicz, Chen, Sutskever and Welling (2016)), masked autoregressive flows (see
Papamakarios, Pavlakou and Murray (2017)), Sylvester NF (see van den Berg, Hasenclever,
Tomczac and Welling (2018)) and neural autoregressive flows (see Huang, Krueger, Lacoste
and Courville (2018)).

Here we use Sylvester NF (SNF) which has the following form:

fJfk(z) =z+ Ah(Bz + b) (7

where A,B and b are D Xx M, M X D and M X 1 matrices, h(-)is an activation function and

M < D.Berg, Hasenclever, Tomczac and Welling (2018) showed that:
dflpk(

dfw1 afy,

det det——
dfll)k 1

det = det(ly + diag(h'(Bz + b))BA) (8)
To ensure inevitability, the authors apply the reparametrisation of (7):
fi.(2) = z + QRR(RQ"z + b) 9

and set:
RmmRmm > _1/”}7-’”00; m=1,..,M
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where R and R are upper triangular M X M matrices, Q is D X M matrix with columns
forming orthonormal set of vectors. In this case (8) has the form:

k
D _ Get(ly + diag (n'(RQ"z+b)) RR) (10

We chose Q to be a permutation matrix.

det

Models

Sparse Bayesian learning regression

Sparse Bayesian learning (SBL) regression problem can be written as (see Tipping
(2001)):

Vi =A+Bxi+ei (11)
e,~N(0,0), i=1,..,N (12)
A~N(0,0,), B;~N(0,ay05), d=1,..,D (13)

where y; is a dependent variable, x; is D X 1 vector of covariates, and e; is an error, 4 is an
intercept, B is 1 X D matrix of coefficients, o is estimated error covariance, a is D X 1 vector
estimated hyperparameters, o4 and oz are non-estimated hyperparameters.

Bayesian vector autoregression with sparse priors and t-Student errors

We estimate Bayesian VAR with t-Student errors and prior in the spirit of Sparse
Bayesian Learning (see Tipping (2001)). It was shown that sparse Bayesian learning (SBL)
prior prunes predictors in linear regression under Gaussian errors (see Faul and Tipping
(2002), Wipf and Nagarajan (2007)), but we found empirically that it works well with t-
Student errors and in a non-linear case>.

t-Student sparse BVAR has the following form®:

Vi = A+ Blyt—l + -+ prt—p + Cet (14)
eit~St(dl~, O, O'i), i = 1, ...,N, t = 1, . T (15)
A;~N(0,04), B;;;~N(0,a,;;08), loga; ~N(us,0,) i,j=1,..,N, l=1,...,p (16)

where y; is N X 1 vector of endogenous variables, e; is N X 1 vector of shocks, Ais N X 1
vector of intercepts, By, ..., By are N X N matrices of coefficients, o is N X 1 vector of scale
parameters for t-distribution, a, d and C are N X 1, N X 1, N X pN matrices of estimated
hyperparameters, and gy, 03, i, and o, are non-estimated hyperparameters. Depending on
the assumptions on matrix C, there are two types of models: diagonal (C is set to be identity
matrix) and non-diagonal (C is lower triangular matrix with ones on its main diagonal and
estimated hyperparameters in positions below the main diagonal). Results with estimated
matrices are shown in Appendix B.

5 See BNN.
6 In this section we overload our notations.
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Bayesian neural network

In recent years, neural networks were with a great success applied for a wide variety
of tasks (see Goodfellow, Bengio and Courville (2016)), but usually they require large
datasets. BNN 7 is an alternative that can alleviate this problem but requires large
computations using MC methods for estimation.

Here we use neural network with 2 hidden layers:

h% = h(Wlxt + bl) (17)
h? = h(W,h} + by) (18)
yt = W3hg + b3 + Cet (19)

where y, is N X 1 vector of endogenous variables, x; is pN X 1 vector of concatenated
lags, e; is N X 1 vector of shocks (see eq.(12)), W;, W, and W5 are N; X pN, N, X N; and N X
N, matrices of coefficients with SBL prior, by, b, and b; are N; X 1, N, X 1 and N X 1 vectors
of biases with SBL prior, h(+) is an activation function.

Dynamic Factor Model (DFEM)

DFM model is widely applied for different exercises (see Stock and Watson (2016))
due to its ability to take into account information of many time series. DFM in this paper has
the form:

Ft:A+BlFt—1+'"+Bth—p+et (20)

y: = C + DF; + e?"s (21)
ee~N(0,1), k=1,...Kpgt =1,..., T (22)
e ~N(0,00%), i=1,..,N,t=1,..,T (23)

A~N(0,0y), By jx~N(0, axop), Ci~N(0,0¢), Diy~N(0,axop),
log 0; ~N (Ko 0bs) G005 ) o k = 1, e, Kas t = 1,.., T, i = 1,...,N (24)

where y, is N X 1 vector of endogenous variables, F; is K,,,, X 1 vector of factors, e; is

Kpmax X 1 vector of shocks, efbs is N X 1 vector of observable errors, 4, By, ..., B, C and D are

matrices of K,gx X 1, Kinax X Kmaxs o Kmax X Kmax,» N X 1and N X K,,,, coefficients, a°?S
is N X 1 vector of scale parameters, a is K, X 1 vector of estimated hyperparameters, g,
0B, 0¢, Op» Ko ops aNd 04 ops are non-estimated hyperparameters. Note, that K, is assumed
to be upper bound for the number of factors and vector of hyperparameters a chooses
relevant factors.

7 See Krueger, Huang, Islam, Turner, Lacoste and Courville (2018) for ML applications.
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Experiments

All experiments were run in Tensorflow? (see Abadi et al. (2016)) on a Desktop PC
with the following specifications: Intel(R) Core(TM) i5-4210U CPU @ 1.70 GHz 2.40 GHz and
RAM 4 GB. For training models we use Adam optimiser (see Kingma and Ba (2014)) with the
learning rate 0.001° with slight modifications which will be described separately for each
model. In experiments with NF approximation we set M = 50, K = 20 (except for SBL
regression with 10 covariates), tanh nonlinearity and use Xavier style initialisation (with
slight modification for DFM). Firstly, for each model we run an experiment? with artificial
data and then with real data (except for SBL regression). We also standardise data before
real data experiments.

Sparse Bayesian learning regression

For SBL regression we can directly compare the performance of mean-field and NF
approximations with respect to exact marginal likelihood optimisation. For this comparison,
we randomly generated covariates from random normal distribution and multiply then by
random matrix. Coefficients were generated from normal distribution and then multiplied
by vector of discrete 0/1 random variables with a different degree of sparsity for
experiments. All models were estimated with 50,000 iterations of Adam.

Six experiments were run for 10/50 covariates, 0.2/0.5/0.8 sparsity 11 and 100
observations. In all experiments except for one mean-field and NF approximations choose
similar structure to the direct marginal likelihood optimisation (see Figures 1-2). Also note
that ELBO and marginal likelihood!2 are close to maximum likelihood (ML) values (see Table
1). Even for the mean-field approximation with 10 covariates and 0.8 sparsity where the
structure is different from other models, ELBO and marginal likelihood are close to ML.

Bayesian vector autoregression with sparse priors and t-Student errors

To demonstrate the ability of VB algorithms for optimisation of lower bound of
marginal likelihood with respect to hyperparameters and choosing right sparse structure for
Bayesian vector autoregression with sparse priors and t-Student errors, we generate 3 time
series (see Figure 3) with a diagonal covariance matrix, 15, 20 and 30 degrees of freedom, 5
lags and sparse structure. Models with 30, 100 and 1000 points are estimated using 50,000
iterations of the Adam

8 Note that for SGVB one may use flexible frameworks for Bayesian estimation such as Stan (see Stan Development
Team (2016)), Edward (see Tran, Kucukelbir, Dieng, Rudolph, Liang and Blei (2017), Tran, Hoffman, Saurous,
Brevdo, Murphy and Blei (2017)) and PyMC3 (Salvatier, Wiecki and Fonnesbeck (2016)) to avoid tedious code
writing.

% Despite the fact that conditions for convergence don’t hold for this learning rate it often used in ML and usually
works well in practice. We discuss the choosing of optimiser in Section 6.

10 Each experiment was run at least 3 times. In tables and graphs we show the best result.

1 In this subsection degree of sparsity denotes expected number of nonzero coefficients.

2 Marginal likelihood is estimated via 100,000 importance sampling draws.
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ELBO Marginal likelihood
MF NF MF NF ML
Artificial data, 10 covariates, 0.2 sparsity -158.4 -159.9 -158.2 -158.8 -158.1
Artificial data, 10 covariates, 0.5 sparsity -164.3 -164.9 -163.3 -163.3 -162.9
Artificial data, 10 covariates, 0.8 sparsity -177.1 -175.7 -175.6 -174.7 -174.6
Artificial data, 50 covariates, 0.2 sparsity -187.9 -190.9 -184.4 -185.9 -183.9
Artificial data, 50 covariates, 0.5 sparsity -246.4 -244.7 -241 -240.2 -239
Artificial data, 50 covariates, 0.8 sparsity -259.8 -254.1 -252.5 -248.7 -247.8

Table 1. ELBO and marginal likelihood for SBL regression

algorithm. Results for mean-field, NF and OLS estimates!3.14 of coefficients are shown in
Figures 4-6. VB approximations produce sparse solutions for all dataset sizes. For 30 points,
the OLS estimate is not sparse and the NF approximation has lower sparsity than the mean-
field approximation, but of course this relation between NF and mean field algorithms is data
dependent. However, as expected this sparsity does not imply better estimates. It can be seen
from Table 2 that ELBO and marginal likelihood are larger for NF approximation. It is also
fulfilled for 100 and 1000 points. Note that for 100 and 1000 points, VB algorithms choose
predictors with 1 and 0 errors respectively, while OLS implies near-zero coefficients only for
1000 points.

For the experiment on real data, we choose a dataset with 7 variables from Giannone,
Lenza and Primiceri (2015). Unlike in Giannone, Lenza and Primiceri (2015) log of real GDP,
GDP deflator, real consumption, real investment, hours worked and real compensation per
hours were differentiated; federal fund rate was used without any changes. Similarly to
artificial data we estimated model with 5 lags, so finally dataset consists of 194 points from
1960Q3 to 2008Q4. As an alternative to VB algorithms, we applied the Gibbs Sampling
algorithm estimated via NF hyperparameters. We also show OLS coefficients to illustrate
absence of sparsity. Estimates are visualised in Figure 7. In general, results are consistent
with findings for artificial data. As in the case of artificial data, the NF algorithm has a larger
ELBO and marginal likelihood (see Table 2), but the difference between marginal likelihood
and ELBO is approximately equal. It means that NF distribution underfits true posterior.
Visually, mean estimates for Gibbs Sampling and NF algorithms are similar (see Figure 7).
Correlations for a number of individual pairs of coefficients have less similarity, but remain
close in average (see Figure 8). The maximum absolute (mean) difference between means is
equal to 0.03 (0.002), while for correlations is 0.45 (0.02). We discuss potential sources and
consequences of the underfitting in the next Section.

Bayesian neural network

Using the same 3 time series of artificial data and US Data, we ask VB algorithms to
estimate BNN with 30 (10) neurons for first (second) layer and LeakyReLu nonlinearity to
show the ability of algorithms to work with nonlinear models. The previously used Adam
algorithm for some experiments converges to poor local optimums with near zero

13 For Bayesian estimates we show mean results.
14 All coefficients are estimated using 100,000 draws.
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coefficients, so we modified it. 10,000 iterations were run as previously. After that d and o
were fixed and replaced for the next 5000 iterations with large (50) and small (0.01) values
respectively. The subsequent iterations were run via Adam algorithm. The second part of the
algorithm helps us to “overfit” data, so optimiser is guided to have non-zero coefficients. The
total number of iterations for artificial and real data is 50,000 and 100,000 respectively?5.

ELBO Marginal likelihood
MF NF MF NF
Artificial data, 30 points | -172.4 -159.7 | -169.5 -158.1
Artificial data, 100 points | -522.9 -515.5 | -516.9 -514.6
Artificial data, 1000 points| -4692.7 -4687.4 | -4682.1 -4681.6
US Data -1374.5 -1362.9]|-1364.1 -1352.7
Table 2. ELBO and marginal likelihood, Bayesian vector autoregression with sparse priors
and t-Student errors
ELBO Marginal likelihood
MF NF MF NF
Artificial data, 30 points | -165.9 -168.2 | -157.9 -152.4
Artificial data, 100 points | -525.7 -527.15| -512.4 -506.5
Artificial data, 1000 points| -4697.5 -4702.6 | -4681.9 -4679.2
US Data -1240.2 -1236.9|-1203.1 -1192.1

Table 3. ELBO and marginal likelihood, Bayesian neural network

Figures 9-17 show estimates for W;, W, and W5 for models with 30, 100 and 1000
points. Table 3 shows ELBO and marginal likelihoods. For all models, BNN achieves close
ELBO results to BVAR with sparse priors and t-Student errors, which has well estimates and
contains true data generating process. Moreover, NF approximation achieves a better
marginal likelihood than BVAR for all dataset sizes. We also found that ELBO for mean-field
approximation for 30 and 100 points is larger than for NF approximation. It is a consequence
of the optimisation procedure, but it is not the case for a lower learning rates NF (see next
Section). An interesting fact is that all models have small fraction of non-zero elements and
the structure of neurons are similar to BVAR structure. For example, the first variable in NF
approximation for 100 points depends on neuron8. This neuron depends only on neuron3,
which is a transformation of first lag of the first variable.

For the US Data, BNN significantly improves in-sample fit of BVAR with sparse priors
and t-Student errors (see Tables 2-3). Additionally, note that both approximations choose
in the first layer the larger number of neurons than the number of variables (see Figures 18-
20). These results may be signals for importance of non-linearity for forecasting, but we did
not test this and leave investigation of forecasting/overfitting properties of sparse model for
macrodata for further research.

15 We also tried to apply different types of annealing, but found that this algorithm works better. The combination of
algorithms shows comparative results.
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Artificial data US Data
MF 3 20
NF 3 20
IC1 6 9
1C2 3 7
IC3 10 20
PC1 9 18
PC2 7 17
PC3 10 20
AIC1 10 20
AlIC2 10 20
AIC3 10 20
BIC1 10 20
BIC2 10 20
BIC3 3 7

Table 4. Number of estimated factors

MF NF PCA
Factor1| 0.997 0.996 0.995
True Factor2| 0.992 0.997 0.992
Factor3| 0.997 0.993 0.984

Factor 1| 0.998 0.998 1
PCA Factor2| 0.992 0.997 1
Factor 3| 0.997 0.993 1

Table 5. R-squared for regressions of factors estimates on true and 3 PCA factors

Dynamic factor model

Similarly to previous two subsections we firstly generated artificial data. Artificial
dataset consists of 50 time series with 100 points. These time series are driven by 3 factors
(see Figure 21). Shocks for factors were generated from the standard normal distribution;
observation errors have standard deviation 0.3. We set K,,,,, = 10, so the total number of
latent variables is more than 1500 which is compatible with BNN, but DFM has temporal
dependence which might be potential source of difficulty. Adam algorithm with 50,000
iterations was used for both approximations.

[t was found that mean-field and NF approximations choose correct number of factors
in all experiments even when we estimate model with more than 1 lag (we run 5 experiments
for 1-3 lags). Note that not all criteria from Bai and Ng (2002) choose correct number of
factors (see Table 4) on these data. Because of the absence of factor normalization, estimated
factors cannot be compared directly, and we regress mean of factors on true factors and 3
PCA components. Table 5 demonstrates that estimates are similar to the true factors. To
illustrate the ability to recover data the product of factors and loadings was sampled. These
data approximations plus noise from (23) are shown in Figures 22-24. Both approximations
lie near true data.
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ELBO Marginal likelihood
MF NF MF NF
Artificial data -3013.1 -3023.2|-29739 -2979.1
US Data, 1lag -39373 -40406 | -39141 -40169
US Data, 2 lags -40343 -40622 | -40050 -40420
US Data, 3 lags -40889 -41082 | -40550 -40668
Table 6. ELBO and marginal likelihood, DFM
MF NF
Factor1| 0.22 0.89
Factor2| 0.38 0.5

Factor 3 0.94 0.98
Factor4| 0.65 0.94
Factor 5 0.7 0.14
Factor6| 0.35 0.66
Factor 7 0.91 0.97
Factor 8 0.99 0.68
Factor 9 0.98 0.97
Factor 10[ 0.68 0.87
Factor 11| 0.07 0.72
Factor 12| 0.94 0.86

Factor 13| 0.35 0.4
Factor 14| 0.98 0.96
Factor 15[ 0.28 0.4

Factor 16 0.49 0.79
Factor 17| 0.76 0.64
Factor 18| 0.56 0.26
Factor 19| 0.98 0.59
Factor 20[ 0.15 0.14

Table 7. R-squared for regressions of factors estimates on 20 PCA factors, 1 lag

These models with K,,,,, = 20 were applied for the September releasel® of monthly
FRED database (see McCraken and Ng (2016)). We choose the maximal balanced panel from
this dataset, so the final dataset consists of 128 series and 314 time periods. Models with 1-
3 lags were estimated. In all cases mean-field and NF approximations choose 20 factors, in
opposite to other criteria (see Table 4). For the US data as for the artificial data, mean-field
outperforms NF approximation in terms of ELBO and marginal likelihood (see Table 6), but
it is effect of optimisation procedure and partially discussed in next Section!’. In opposite to
artificial data, estimated factors are less related to PCA factors (see Table 7). Note, however,
that for factors with large means of loadings R-squared is near 0.9 (see Figures 25-27).
Loadings cannot be directly interpreted as an importance of factors (factors are not scaled,
multimodality of distribution may appear!8 or, probably, we do not use enough lags), but it
is a signal for that and have to be investigated later. Finally, we compared ability to recover
true data of NF approximation and Gibbs Sampling given NF hyperparameters. In fact, it is a

16 Data set was downloaded at 1 October, 2018.

17 For instance, we run additional 50,000 iterations for artificial data with 0.0001 learning rate and achieve ELBO: -
3002.8 and marginal likelihood: -2971.3.

18 Visually, we did not found multimodality in our estimates.
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comparison of recovering data given the same hyperparameters, so as in the case of BVAR it
compares Bayesian parts of model. Figure 28 shows 6 randomly chosen series from dataset.
Both algorithms demonstrate approximately the same estimates and capture main
tendencies in data dynamics. For the most series, estimates are close to PCA with 20 factors,
which is the best Frobenius norm estimate.

Discussion and Further Directions

Experiments show that mean-field and NF approximation might be useful for
optimisation of marginal likelihood. As expected, NF approximation outperforms mean-field
approximation for all models except for DFM model and number of SBL regressions, but we
found some intuitively unusual results. Firstly, for a number of models the ELBO of mean-
field approximation is larger than ELBO of NF approximation. The main reason of such
behavior of models is optimisation procedure. For a bad initialisation, models may fall into
poor local optimum. The non-decreasing learning rate is an alternative source of the
problem. We found that both factors play significant role, but the second one is more
important in investigated models. The number of additional experiments showed that using
a decreasing schedule for the learning rate NF approximation helps to achieve better results;
however, it requires much more iterations. Secondly, for a number of experiments the
marginal likelihood is closer to ELBO for a mean-field approximation. This problem is similar
to the first one and can be mitigated by decreasing schedule for the learning rate.
Alternatively, the larger number of samples can be used for decreasing the variance of ELBO
gradient. Achieving better results for NF approximations of DFM and SBL regression and
decreasing the gap between ELBO and marginal likelihood can be done in the same ways.

We also noted that initialisation plays crucial role for state space models, especially,
for coefficients of equation for factors. If eigenvalues of a generated matrix are more than 1,
factors will be extremely large generating NaNs in the computation procedure. There are
many solutions, but we tried two: clipping factors and initialising model with near zero
matrices. Finally, we decided to merge these procedures, because the former ensures the
absence of NaNs, but gradients may be large and the latter rarely produces NaNs in some
experiments.

The computational time is a cornerstone of Bayesian inference. No experiment with
mean-field approximation took us more than 1 hour?. NF approximations took us no more
than 3 hours20. The most time consuming model is DFM. Probably, our realisation is not
optimal and can be improved, but we found this time acceptable. One may easily use GPU
and TPU (provided, for example, for free by Google Colab) or other programming languages
to speed up computations. Interestingly, NF falls into the neighbourhood of final point after
few thousands of iterations in opposite to mean-field approximations and drifts slowly after
that. This fact can be used for high-dimensional model with few hyperparameters to stop
model running earlier and apply IS algorithm.

We run only small fraction of possible experiments and just illustrated the potential
of described techniques. We leave for further research forecasting properties of estimated
models which is one of the main goals of building macromodels. There are a lot of other

19 For US data, BVAR - 5 minutes, NN - 20 minutes, DFM — 50 minutes.
20 For US data, BVAR - 20 minutes, NN - 40 minutes, DFM — 2 hours 40 minutes.
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directions for further research including optimisation procedure and the form of NF
approximation. The optimisation procedure may be modified by changing the learning rate
schedule or increasing/decreasing number of iterations. One may use other stochastic
optimisation procedures such as momentum (see Polyak (1964)), Nesterov momentum (see
Nesterov (1983)), AdaGrad (see Duchi, Hazan and Singer (2011)), RMSProp (see Hinton
(2012)), ADVI optimiser (see Kucukelbir, Tran, Ranganath, Gelman and Blei (2017)), restart
optimisers (see Loshchilov and Hutter (2017)) and AddSign/PowerSign (see Bello, Zoph,
Vasudevan and Le (2017)). NF approximation also requires choosing a number of
hyperparameters such as depth and width. Moreover, as was mentioned in introduction
other types of NF approximation exist and might be estimated. Even for the presented model,
the properties under different parameters of generated data (different noise to signal ratios,
misspecified models and so on) have to be investigated. The formal comparison of accuracy
and speed with MCMC methods is also important, but our experience shows that VB methods
are usually faster to achieve the adequate accuracy, especially in large scale applications
(where the closed or simple Gibbs Sampling form are not available).

Only sparse models were investigated in the paper, but that was not the goal. Of
course, many models with intractable marginal likelihood and/or posterior (with and
without hyperparameters) can be estimated via presented algorithm. Moreover, estimated
approximations can be used not directly, but as proposal densities for other algorithms such
as importance sampling.

We should mention that we tried to estimate the ABM model which lies in the class of
state space models, but its efficient realisation in Tensorflow requires considerable effort
and lies outside of the scope of this paper.

Conclusion

We demonstrated the applicability of SGVB algorithm for three different classes of
models. We applied traditional mean field approximation and more flexible NF
approximation. The results showed that the SGVB algorithm is fast and relatively accurate,
but we have a long way to go for full understanding the properties of approximations for
macrodata. We hope that our paper will be a starting point for investigating properties of
described algorithms for macromodels.
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Appendix A

Estimated coefficients, dim = 10, N = 100, sparsity = 0.2
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Figure 1. Artificial data estimates for sparse Bayesian learning regression, 10 covariates
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Figure 2. Artificial data estimates for sparse Bayesian learning regression, 50 covariates
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tStudent-SBL, mean-field approximation, T = 30 L
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Figure 4. Estimation results for matrix B using 30 points from artificial data
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tStudent-SBL, mean-field approximation, T = 100
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Figure 5. Estimation results for matrix B using 100 points from artificial data
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tStudent-SBL, mean-field approximation, T = 1000
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Figure 6. Estimation results for matrix B using 1000 points from artificial data
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tStudent-SBL, mean-field approximation, US Data
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Figure 7. Estimation results for matrix B, US Data
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Correlation of coefiicients for RGDP equation, Gibbs Sampling, US Data
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Figure 8. Correlation of coefficients, Bayesian vector autoregression with sparse priors and
t-Student errors
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tStudent-BNN, first layer weights, NF, T = 30

tStudent-BNN, first layer weights, mean-field approximation, T = 30
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Figure 10. Estimation results
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tStudent-BNN, third layer weights, mean-field approximation, T = 30 1.
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Figure 11. Estimation results for matrix W5 using 30 points from artificial data

tStudent-BNN, first layer weights, mean-field approximation, T = 100

neuronl -
neuron2 -
neuron3 -
neuran4 -
neurons -
neuroné -
neuran7 -
neurons -
neurond -
neuronl1o -
neuronll -
neuronl2 -
neuronl3 -
neuronld -
neuronls -
neuronle -
neuronl? -
neuronls -
neuronl9 -
neuran2o -
neuran2l -
neuran2z -
neuron23
neuron24 -
neuran2s - . .
neuron2e -
neuran2’y -
neuron2s -
neuron29 -

neuron3o -

varl jagy -
varz lagy
Vars jagy -
varl jagy -
Var2 jags -
Vars jags -
var] lags -
Var2 ags -
Vars jags -
Varl lagy -
Varp feg4 -
Varzy lagq -
Var] fags 4
Var2 Jags -
Varz lags

Figure 12. Estimation results for matrix W; using 100 points from artificial data

tStudent-BNN, first layer weights, NF, T = 100
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tStudent-BNN, second layer weights, mean-field approximation, T = 100
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Figure 13.

tStudent-BNN, third layer weights, mean-field approximation, T = 100
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Figure 14. Estimation results for matrix W5 using 100 points from artificial data
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tStudent-BNN, first layer weights, mean-field approximation, T :_}000
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Figure 15. Estimation results for matrix W; using 1000 points from artificial data

tStudent-BNN, second layer weights, mean-field approximation, T = 1000
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Figure 16. Estimation results for matrix W, using 1
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tStudent-BNN, third layer weights, mean-field approximation, T = 1000
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Figure 17. Estimation results for matrix W5 using 1000 points from artificial data
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tStudent-BNN, first layer weights, mean-field approximation, US Data
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tStudent-BNN, first layer weights, NF approximation, US Data

neuronl -

neuron? -

neuron3 -

neurond -

neuron5 -

neuront -

neuron? -

neurong -

neurond -

neuronlo -

neuronll -

neuronl2 -

neuronld -

neuronld -

neuronl5 -

neuronlé

neuronl? -

neuronl@ -

neuronl® -

neuron2o -

neuron2l -

neuron2? -

neuron23 -

neuronz4 -

nauron25 -

neuron2é -

neuron27 -

neuron28g -

neuron2g -

neuron30 -

_Sbgy m.o::uﬁwu_

_ Sbey L_:cx.\n.Eou L5}
| nmm__ Sinoy .QEw ’
- Sbey Wigyn

- 58} sy, - SBej sy,
- sbgy dasy . - by dQoy
. - 562 4q0, - SBe) gqo,

- thgy m.a:;uﬁwu_
_the L:ox...o.Eou sy

vbey Sinoy g

bbey AUy

. - bbegy suoy - pbgy Sy
- 6

[ #1 daog | - PPl dagy

- P08 4y - ¥08) 4qay,

m.mm‘ mnt:u__uwu
£

]
_cbg L.;OI...Q.EOU sy

_ £bgy Sinogy g

- &Bey py, Qs - £bgy iag
- £bey sy . - &be
0 1 Stoy
_ gbp g
O s B
B v, - €Be) ggo,

26g; mw:__..ubwu
_2bg L_:c_:_.\anu s
- 268) sung, s y
- Zbg AUlgge

- Zbey Suoy . - 2bg; Sy
. - 21 ggoq I - 2Bey yqq,
. . . - 268 4qoy, . - 2bey ﬂaw“

I6g mn::ubmu
_ Ibg Lzox...o.Eou sy

_ Ibg Singy dug

Lhegy MiQgg

- They Stoy - They Suoy
_ U6y

H | H = 161 4qo, | - 6o, 4g,
-I6

T ®l dgoy - b daoy

Figure 18. Estimation results for matrix W;, US Data
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Figure 19. Estimation results for matrix W,, US Data
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Figure 20. Estimation results for matrix W3, US Data
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Figure 21. Artificial factors for DFM model
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Variablel, mean-field approximation
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Figure 22. Recovered artificial data (5th, 50t and 95t quantities), DFM
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Figure 23. Recovered artificial data (5t, 50t and 95t quantities), DFM
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Figure 24. Recovered artificial data (5th, 50t and 95t quantities), DFM
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DFM, mean-field approximation, US Data, 1 lag
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DFM, NF approximation, US Data, 1 lag
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Figure 25. Factor loadings, US Data
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Figure 26. Factor loadings, US Data
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Figure 27. Factor loadings, US Data
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tStudent-SBL-non-diag, mean-field approximation, US Data
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tStudent-SBL-non-diag, NF approximation, US Data
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tStudent-SBL, NF approximation, US Data
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Figure 29. Estimation results for matrix B, non-diagonal, US Data
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tStudent-SBL, mean-field approximation, US Data
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Figure 29. Estimation results for matrix B, non-diagonal, US Data (continues)
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tStudent-BNN, first layer weights, mean-field approximation, US Data
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tStudent-BNN-non-diag, first layer weights, mean-field approximation, US Data
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Figure 30. Estimation results for matrix W;, mean-field , non-diagonal, US Data
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tStudent-BNN, first layer weights, NF approximation, US Data
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tStudent-BNN-non-diag, first layer weights, NF approximation, US Data
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Figure 31. Estimation results for matrix W;, NF , non-diagonal, US Data
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tStudent-BNN, second layer weights, mean-field approximation, US Data
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tStudent-BNN-non-diag, second layer weights, mean-field approximation, US Data
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Figure 32. Estimation results for matrix W,, mean-field , non-diagonal, US Data
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tStudent-BNN, second layer weights, NF approximation, US Data
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Figure 33. Estimation results for matrix W,, NF , non-diagonal, US Data
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tStudent-BNN, third layer weights, mean-field approximation, US Data
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Figure 34. Estimation results for matrix W5, mean-field , non-diagonal, US Data
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Figure 35. Estimation results for matrix W3, NF , non-diagonal, US Data
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Appendix B

The matrix was estimated in the main part of the paper for models with diagonal
covariance. Here we show results for Bayesian vector autoregression with sparse priors and t-
Student errors, and the Bayesian neural network with a non-diagonal covariance matrix.

Equations (14) and (19) do not restrict matrix C, but we faced computational problems
calculating its log-determinant in Tensorflow. To avoid this problem, we set C to be triangular
with ones in diagonal, so the log-determinant is zero. Estimation results for US Data are shown
in Figures 29-35. Table 8 demonstrates that the non-diagonal covariance matrix significantly
improves ELBO and marginal likelihood of the models.

ELBO Marginal likelihood

MF NF MF NF
BVAR, US Data -1374.5 -13629 | -1364.1 -1352.7
BVAR, US Data, non-diag | -1131.1 -1122.3 | -1118.1 -1114.4
BNN, US Data -1240.2 -1236.9 | -1203.1 -1192.1
BNN, US Data, non-diag | -1077.3 -1042.5| -1046.9 -1013.8

Table 8. ELBO and marginal likelihood, non-diagonal



