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Abstract 
 

 
 
 
 
 

We illustrate the ability of the stochastic gradient variational Bayes algorithm, which is a 
very popular machine learning tool, to work with macrodata and macromodels. Choosing two 
approximations (mean-field and normalizing flows), we test properties of algorithms for a set of 
models and show that these models can be estimated fast despite the presence of estimated 
hyperparameters. Finally, we discuss the difficulties and possible directions of further research. 
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Introduction 

Bayesian modelling is a popular approach for estimating macroeconomic models due 

to regularisation properties and the ability of taking into account epistemic and aleatoric 

uncertainties. It is one of the main tools for the inference in vector autoregressions (see 

Litterman (1980), Doan, Litterman and Sims (1984), Sims (1993), Villani (2009), Banbura, 

Giannone and Reichlin (2010), Koop and Korobilis (2010), Giannone, Lenza and Primiceri 

(2015)), dynamic factor models (see Otrok and Whiteman (1998), Kim and Nelson (1998), 

Aguilar and West (2000), Blake and Mumtaz (2012)), dynamic stochastic general 

equilibrium models (see Smets and Wouters (2003, 2007), Fernandez-Villaverde and Rubio-

Ramirez (2007), Justiniano and Primiceri (2008), Herbst and Schorfheide (2015)), agent 

based models (Grazzini, Richardi and Tsionas (2017), Gatti and Grazzini (2018), Lux (2018) 

among others. 

 Posterior distribution plays a key role in Bayesian inference, but unfortunately in 

most cases it is not possible to sample directly from or integrating over it. Usually, this 

problem is solved by using approximations. There are two most popular ways to 

approximate posterior distributions: Monte Carlo approximation and direct approximation. 

The first group, for instance, includes Gibbs Sampling (see Casella and George (1992)), 

Importance Sampling (see Owen (2013)), Metropolis-Hastings (see Chib and Greenberg 

(1995)), Hamiltonian Monte Carlo (see Neal (2011)), No-U-Turn Sampling (see Hoffman and 

Gelman (2014)), Sequential Monte Carlo (see Doucet, De Freitas and Gordon (2001)) 

algorithms and the second group contains MAP estimation, Expectation Propagation 

algorithm (see Minka (2001)), Variational Bayes estimation (see Wainwright and Jordan 

(2008)), α-divergence (see Li and Turner (2016)) among others. Monte Carlo algorithms 

(asymptotically) sample from exact posterior that imply accuracy, but direct methods are 

faster in many tasks. Monte Carlo (MC) estimation methods are widely used in 

macroeconomics1 in opposite to direct approximations (except for MAP estimation). To the 

best of our knowledge, despite the success in other fields there is only small fraction of 

papers that uses direct approximations (see Korobilis (2017), Koop and Korobilis (2018), 

Seleznev (2018)) for macromodelling. 

 To illustrate usefulness and partially fill this gap, we apply the Variational Bayes 

algorithm (VB) for inference in three classes of models which are of great interest in 

macroeconomic society in recent years: Bayesian vector autoregression with sparse priors 

and t-Student errors (t-Student sparse BVAR), Bayesian neural network (BNN) and dynamic 

factor model (DFM). We choose these models to show the flexibility of the VB approach. In 

all exercises we ask the method to estimate posterior simultaneously maximising marginal 

likelihood with respect to hyperparameters 2 , which is a very challenging task for MC 

methods. BVAR exercise shows the applicability of the method to a very popular class of 

linear models, but without standard restrictions such as Gaussian noise. BNN exercise 

demonstrates the ability of method to work with highly non-linear models where efficient 

                                                        
1 For example, Gibbs Sampling: BVAR (see Karlsson (2012)) and DFM (see Blake and Mumtaz (2012));  Metropolis- 

Hastings algorithm: DSGE (see Herbst and Schorfheide (2016)); Hamiltonian Monte Carlo: Cointegrated BVAR (see 

Marowka, Peters, Kantas and Bagnarosa (2017)); No-U-Turn Sampling: SVMA (see Plagborg-Moller (2016)); 

Sequential Monte Carlo: DSGE (see Herbst and Schorfheide (2015)) and ABM (see Lux (2018)). 
2 We treat variance of prior for each coefficient and degrees of freedom for t-Student distribution as hyperparameters. 
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MC algorithms, such as Gibbs Sampling, are infeasible. DFM exercise shows the ability of the 

VB method to estimate state-space models (models with temporal dependencies) that can 

also be useful for ABM and DSGE models. The direct measures of accuracy cannot be directly 

applied for models described above due to the absence of closed form marginal likelihood 

expression, so we additionally run an experiment with classical sparse Bayesian learning 

regression. 

The traditional VB approach restricts families of posterior and approximation densities 

because of the need to have closed form or simply solved (optimised) steps3 and is not 

convenient for direct application in some of described earlier tasks. To overcome these 

difficulties, we use two popular machine learning tricks: stochastic gradient estimation 

procedure and normalizing flow density estimation. 

The stochastic gradient estimation procedure for VB algorithm or stochastic gradient 

variational Bayes (SGVB) was introduced in Kingma and Welling (2014) and is popular in a 

wide range of algorithms including variational autoencoders (see Kingma and Welling 

(2014)), variational dropout (see Kingma, Salimans and Welling (2015), Gal and 

Ghahramani (2016), Molchanov, Ashukha and Vetrov (2017)), importance weighted 

autoencoders (see Burda, Grosse and Salakhutdinov (2015)), Hamiltonian variational 

inference (see Salimans, Kingma and Welling (2015)), Bayesian compression (see Louizos, 

Ulrich and Welling (2017)), and variational sequential Monte Carlo (see Naesseth, 

Linderman, Ranganath and Blei (2018)). It helps to optimise evidence lower bound (ELBO) 

for a wide variety of posterior, but requires the ability of fast and accurate sampling from 

approximate density. This requirement usually restricts the family of approximate densities. 

Normalizing flows (NF) is a transformation of random variables that forms a rich 

family of densities. In machine learning, it is often used as an alternative for generative 

adversarial networks (see Goodfellow, Pouget-Abadie, Mirza, Xu, Warge-Farley, Ozair, 

Courville and Bengio (2014)) or variational autoencoders (see Kingma and Welling (2014)) 

for generation of objects similar to data (see Dinh, Krueger and Bengio (2014), Dinh, Sohl-

Dickstein and Bengio (2016), Kingma and Dhariwal (2018)). Rezende and Mohamed (2015) 

propose use of NF transformation as a family of approximations for variational inference and 

mitigation of the problem of restriction for VB approximations. It increases computational 

complexity, but in practice still works fast relative to MC methods. 

We describe SGVB and NF in more detail in Section 2 and Section 3. Section 4 is devoted 

to details of the models. Results are presented in Section 5. In Section 6 we discuss results 

and further directions of work. Section 7 concludes. 

 

Stochastic Gradient Variational Bayes 

VB algorithm maximises lower bound of logarithm of marginal likelihood with 

respect to approximate density and hyperparameters: 

 

            log 𝑝(𝑦|𝑥, 𝜑) = log ∫ 𝑝(𝑦, 𝜃|𝑥, 𝜑)𝑑𝜃 = log ∫
𝑝(𝑦|𝜃, 𝑥, 𝜑)𝑝(𝜃|𝜑)

𝑞(𝜃)
𝑞(𝜃)𝑑𝜃 (1) 

                                             ≥ ∫(log 𝑝(𝑦, 𝜃|𝑥, 𝜑) − log 𝑞(𝜃))𝑞(𝜃)𝑑𝜃 =   (2) 

                                                        
3 Probably it is the reason of small popularity of this method among macroeconomists. 
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                   log 𝑝(𝑦|𝑥, 𝜑) − ∫(log 𝑞(𝜃) − log 𝑝(𝜃|𝑦, 𝑥, 𝜑))𝑞(𝜃)𝑑𝜃 = (3) 

                    log 𝑝(𝑦|𝑥, 𝜑) − 𝐾𝐿(𝑞(𝜃)|| log 𝑝(𝜃|𝑦, 𝑥, 𝜑))  = 𝐿(𝑞, 𝜑) (4) 

 

where 𝑦, 𝑥, 𝜑, 𝜃  are sets of dependent variables, regressors, hyperparameters and 

parameters; 𝑞(𝜃) is approximate density; 𝑝(𝑦|𝑥, 𝜑) and 𝐿(𝑞, 𝜑) are logarithms of marginal 

likelihood and its lower bound; 𝐾𝐿(𝑞(𝜃)||𝑝(𝜃|𝑦, 𝑥, 𝜑)) is a KL divergence. 

 Traditional VB uses an iterative procedure that assumes 𝑞(𝜃) to be a product of block 

densities (see Ormerod and Wand (2010), Blei, Kucukelbir and McAuliffe (2017)) and 

simple form for 𝑝(𝜃|𝑦, 𝑥, 𝜑) implying closed form for each step. SGVB allows for optimising 

𝐿(𝑞, 𝜑)  directly with stochastic optimization. It utilises the fact that ∫(log 𝑝(𝑦, 𝜃|𝑥, 𝜑) −

log 𝑞(𝜃))𝑞(𝜃)𝑑𝜃 and its derivatives can be estimated via samples. For a parametric family 

𝑞𝜓(𝜃) we get: 

 

                                       ∇𝜓(∫(log 𝑝(𝑦, 𝜃|𝑥, 𝜑) − log 𝑞𝜓(𝜃))𝑞𝜓(𝜃)𝑑𝜃) 

        = ∫ ∇𝜓 log 𝑞𝜓(𝜃) (log 𝑝(𝑦, 𝜃|𝑥, 𝜑) − log 𝑞𝜓(𝜃))𝑞𝜓(𝜃)𝑑𝜃 

     + ∫ ∇𝜓(log 𝑝(𝑦, 𝜃|𝑥, 𝜑) − log 𝑞𝜓(𝜃))𝑞𝜓(𝜃)𝑑𝜃 

                               ≈
1

𝑁
∑ ∇𝜓 log 𝑞𝜓(𝜃𝑖) (log 𝑝(𝑦, 𝜃𝑖|𝑥, 𝜑) − log 𝑞𝜓(𝜃𝑖))𝑁

𝑖=1  

                                        +
1

𝑁
∑ ∇𝜓(log 𝑝(𝑦, 𝜃𝑖|𝑥, 𝜑) − log 𝑞𝜓(𝜃𝑖))𝑁

𝑖=1  

                                                            𝜃𝑖~𝑞𝜓(𝜃), 𝑖 = 1, … , 𝑁 

 

 This estimator has a large variance in practice, so Kingma and Welling (2014) 

proposed a reparameterization trick4. Distribution 𝑞𝜓(𝜃) is replaced with 𝑞(𝑔𝜓(𝑒)), where 

𝑒~𝑝(𝑒). 𝑝(𝑒) does not depend on parameters and the new estimator can be written in the 

following form: 

 

                                         ∇𝜓(∫(log 𝑝(𝑦, 𝜃|𝑥, 𝜑) − log 𝑞𝜓(𝜃))𝑞𝜓(𝜃)𝑑𝜃) 

                             = ∇𝜓 (∫ (log 𝑝(𝑦, 𝑔𝜓(𝑒)|𝑥, 𝜑) − log 𝑞 (𝑔𝜓(𝑒))) 𝑝(𝑒)𝑑𝑒) 

                                = (∫ ∇𝜓(log 𝑝(𝑦, 𝑔𝜓(𝑒)|𝑥, 𝜑) − log 𝑞(𝑔𝜓(𝑒)))𝑝(𝑒)𝑑𝑒)      (5) 

                                   ≈
1

𝑁
∑ ∇𝜓(log 𝑝(𝑦, 𝑔𝜓(𝑒𝑖)|𝑥, 𝜑) − log 𝑞(𝑔𝜓(𝑒𝑖)))𝑁

𝑖=1       (6) 

                                                               

𝑒𝑖~𝑝(𝑒), 𝑖 = 1, … , 𝑁 

 

 This estimator is unbiased, so under the appropriate schedule, learning rates can be 

used in stochastic gradient algorithm or its extensions (see Kushner and Yin (2003)). 

 

Mean-field and Normalizing Flows Approximation 

In this paper, we approximate the posterior with Gaussian mean-field and NF 

approximation. The former has the form: 

 

                                                        
4 It cannot be applied in all cases. 
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                                    𝑞𝜓(𝜃) = 𝑞𝜓1

(𝜃1)𝑞𝜓2
(𝜃2) … 𝑞𝜓𝐷

(𝜃𝐷) 

                                  𝑞𝜓𝑑
(𝜃𝑑)~𝜇𝑑 + 𝜎𝑑𝑁(0,1), 𝑑 = 1, … , 𝐷 

 

where 𝐷 is the dimensionality of the space of parameters, and 𝜓𝑑  are parameters of 𝑑th 

component of approximate distribution. 

 The latter uses a chain of invertible transformations: 

 

                                              𝜃 = 𝑔𝜓(𝑒) = 𝑓𝜓𝐾

𝐾 (𝑓𝜓𝐾−1

𝐾−1 (… (𝑓𝜓1

1 (𝑒)) )) 

and the identities: 

                                                              𝑞(𝜃) = |det
𝑑𝜃

𝑑𝑒
|

−1

𝑞(𝑒) 

                                                               = |det
𝑑𝑔𝜓(𝑒)

𝑑𝑒
|

−1

𝑞(𝑒) 

                                               = 𝑞(𝑒) |det
𝑑𝑓𝜓1

1

𝑑𝑒
|

−1

∏ |det
𝑑𝑓𝜓𝑘

𝑘

𝑑𝑓𝜓𝑘−1
𝑘 |

−1

𝐾
𝑘=2  

 

where 𝐾 is the number of transformations applied to initial random variables 𝑒, and 𝜓𝑘 are 

parameters of 𝑘th transformation. 

 The second term in (6) in this case is equal to: 

 

1

𝑁
∑ ∇𝜓 (− log 𝑞 (𝑔𝜓(𝑒𝑖)))

𝑁

𝑖=1

=
1

𝑁
∑ ∇𝜓 (− log 𝑞(𝑒𝑖) + log |det

𝑑𝑓𝜓1

1

𝑑𝑒
| + ∑ log |det

𝑑𝑓𝜓𝑘

𝑘

𝑑𝑓𝜓𝑘−1

𝑘 |

𝐾

𝑘=2

 )

𝑁

𝑖=1

 

 

 The main difficulty of this approach is choosing the functional form of transformation 

to be flexible enough and computationally efficient. There is a number of approaches in the 

literature to construct such transformation: non-linear independent component estimation 

structure (see Dinh, Krueger and Bengio (2014)), planar and radial flows (see Rezende and 

Mohamed (2015)), real-value non volume preserving transformation (see Dinh, Sohl-

Dickstein and Bengio (2016)), inverse autoregressive flows (see Kingma, Salimans, 

Jozefowicz, Chen, Sutskever and Welling (2016)), masked autoregressive flows (see 

Papamakarios, Pavlakou and Murray (2017)), Sylvester NF (see van den Berg, Hasenclever, 

Tomczac and Welling (2018)) and neural autoregressive flows (see Huang, Krueger, Lacoste 

and Courville (2018)). 

 Here we use Sylvester NF (SNF) which has the following form: 

                                                            𝑓𝜓𝑘

𝑘 (𝑧) = 𝑧 + 𝐴ℎ(𝐵𝑧 + 𝑏)           (7) 

where 𝐴, 𝐵 and 𝑏 are 𝐷 × 𝑀, 𝑀 × 𝐷 and 𝑀 × 1 matrices,  ℎ(∙) is an activation function and 

𝑀 ≤  𝐷. Berg, Hasenclever, Tomczac and Welling (2018) showed that: 

                                          det
𝑑𝑓𝜓𝑘

𝑘 (𝑧)

𝑑𝑧
= det (𝐼𝑀 + 𝑑𝑖𝑎𝑔(ℎ′(𝐵𝑧 + 𝑏))𝐵𝐴)         (8) 

To ensure inevitability, the authors apply the reparametrisation of (7): 

                                                        𝑓𝜓𝑘

𝑘 (𝑧) = 𝑧 + 𝑄𝑅ℎ(𝑅̃𝑄𝑇𝑧 + 𝑏)          (9) 

and set: 

                                                  𝑅𝑚𝑚𝑅̃𝑚𝑚 > −1/‖ℎ′‖∞, 𝑚 = 1, … , 𝑀 
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where 𝑅  and 𝑅̃  are upper triangular 𝑀 × 𝑀  matrices, 𝑄  is 𝐷 × 𝑀  matrix with columns 

forming orthonormal set of vectors. In this case (8) has the form: 

                                       det
𝑑𝑓𝜓𝑘

𝑘 (𝑧)

𝑑𝑧
= det (𝐼𝑀 + 𝑑𝑖𝑎𝑔 (ℎ′(𝑅̃𝑄𝑇𝑧 + 𝑏)) 𝑅̃𝑅)        (10) 

 We chose 𝑄 to be a permutation matrix. 

 

Models 

Sparse Bayesian learning regression 

 

Sparse Bayesian learning (SBL) regression problem can be written as (see Tipping 

(2001)): 

                                                       𝑦𝑖 = 𝐴 + 𝐵𝑥𝑖 + 𝑒𝑖     (11) 

                                                𝑒𝑖~𝑁( 0, 𝜎),   𝑖 = 1, … , 𝑁     (12) 

                                  𝐴~𝑁(0, 𝜎𝐴), 𝐵𝑑~𝑁(0, 𝑎𝑑𝜎𝐵), 𝑑 = 1, … , 𝐷       (13)

  

where 𝑦𝑖 is a dependent variable, 𝑥𝑖  is 𝐷 × 1 vector of covariates, and 𝑒𝑡 is an error, 𝐴 is an 

intercept, 𝐵 is 1 × 𝐷 matrix of coefficients, 𝜎 is estimated error covariance, 𝑎 is 𝐷 × 1 vector 

estimated hyperparameters, 𝜎𝐴 and 𝜎𝐵 are non-estimated hyperparameters. 

 

Bayesian vector autoregression with sparse priors and t-Student errors 

 

We estimate Bayesian VAR with t-Student errors and prior in the spirit of Sparse 

Bayesian Learning (see Tipping (2001)). It was shown that sparse Bayesian learning (SBL) 

prior prunes predictors in linear regression under Gaussian errors (see Faul and Tipping 

(2002), Wipf and Nagarajan (2007)), but we found empirically that it works well with t-

Student errors and in a non-linear case5. 

t-Student sparse BVAR has the following form6: 

 

                                      𝑦𝑡 = 𝐴 + 𝐵1𝑦𝑡−1 + ⋯ + 𝐵𝑝𝑦𝑡−𝑝 + 𝐶𝑒𝑡  (14) 

                                  𝑒𝑖𝑡~𝑆𝑡(𝑑𝑖, 0, 𝜎𝑖),   𝑖 = 1, … , 𝑁, 𝑡 = 1, … , 𝑇  (15) 

          𝐴𝑖~𝑁(0, 𝜎𝐴), 𝐵𝑙,𝑖𝑗~𝑁(0, 𝑎𝑙,𝑖𝑗𝜎𝐵), log 𝜎𝑖 ~𝑁(𝜇𝜎, 𝜎𝜎)   𝑖, 𝑗 = 1, … , 𝑁, 𝑙 = 1, … , 𝑝  (16)

  

where 𝑦𝑡  is 𝑁 × 1 vector of endogenous variables, 𝑒𝑡  is 𝑁 × 1 vector of shocks, 𝐴 is 𝑁 × 1 

vector of intercepts, 𝐵1, … , 𝐵𝑝  are 𝑁 × 𝑁 matrices of coefficients, 𝜎 is 𝑁 × 1 vector of scale 

parameters for t-distribution, 𝑎 , 𝑑  and 𝐶  are 𝑁 × 1, 𝑁 × 1, 𝑁 × 𝑝𝑁 matrices of estimated 

hyperparameters, and 𝜎𝐴, 𝜎𝐵, 𝜇𝜎 and 𝜎𝜎 are non-estimated hyperparameters. Depending on 

the assumptions on matrix 𝐶, there are two types of models: diagonal (𝐶 is set to be identity 

matrix) and non-diagonal (𝐶 is lower triangular matrix with ones on its main diagonal and 

estimated hyperparameters in positions below the main diagonal). Results with estimated 

matrices are shown in Appendix B. 

                                                        
5 See BNN. 
6 In this section we overload our notations. 
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Bayesian neural network 

 

In recent years, neural networks were with a great success applied for a wide variety 

of tasks (see Goodfellow, Bengio and Courville (2016)), but usually they require large 

datasets. BNN 7  is an alternative that can alleviate this problem but requires large 

computations using MC methods for estimation. 

 Here we use neural network with 2 hidden layers: 

 

                                                       ℎ𝑡
1 = ℎ(𝑊1𝑥𝑡 + 𝑏1)  (17) 

                                                       ℎ𝑡
2 = ℎ(𝑊2ℎ𝑡

1 + 𝑏2)  (18) 

                                                    𝑦𝑡 = 𝑊3ℎ𝑡
2 + 𝑏3 + 𝐶𝑒𝑡   (19) 

 

where 𝑦𝑡  is 𝑁 × 1  vector of endogenous variables, 𝑥𝑡  is 𝑝𝑁 × 1  vector of concatenated 

lags, 𝑒𝑡 is 𝑁 × 1 vector of shocks (see eq.(12)), 𝑊1, 𝑊2 and 𝑊3 are 𝑁1 × 𝑝𝑁, 𝑁2 × 𝑁1 and 𝑁 ×

𝑁2 matrices of coefficients with SBL prior, 𝑏1, 𝑏2 and 𝑏3 are 𝑁1 × 1, 𝑁2 × 1 and 𝑁 × 1 vectors 

of biases with SBL prior, ℎ(∙) is an activation function. 

 

Dynamic Factor Model (DFM) 

 

DFM model is widely applied for different exercises (see Stock and Watson (2016)) 

due to its ability to take into account information of many time series. DFM in this paper has 

the form: 

 

                                      𝐹𝑡 = 𝐴 + 𝐵1𝐹𝑡−1 + ⋯ + 𝐵𝑝𝐹𝑡−𝑝 + 𝑒𝑡  (20) 

                                                    𝑦𝑡 = 𝐶 + 𝐷𝐹𝑡 + 𝑒𝑡
𝑜𝑏𝑠  (21) 

 

                               𝑒𝑘𝑡~𝑁( 0, 1),   𝑘 = 1, … , 𝐾𝑚𝑎𝑥, 𝑡 = 1, … , 𝑇  (22) 

                              𝑒𝑖𝑡
𝑜𝑏𝑠~𝑁( 0, 𝜎𝑖

𝑜𝑏𝑠),   𝑖 = 1, … , 𝑁, 𝑡 = 1, … , 𝑇  (23) 

 

𝐴𝑘~𝑁(0, 𝜎𝐴), 𝐵𝑙,𝑗𝑘~𝑁(0, 𝑎𝑘𝜎𝐵), 𝐶𝑖~𝑁(0, 𝜎𝐶),   𝐷𝑖𝑘~𝑁(0, 𝑎𝑘𝜎𝐷), 

log 𝜎𝑖 ~𝑁(𝜇𝜎,𝑜𝑏𝑠, 𝜎𝜎,𝑜𝑏𝑠), 𝑗, 𝑘 = 1, … , 𝐾𝑚𝑎𝑥, 𝑡 = 1, … , 𝑇, 𝑖 = 1, … , 𝑁                (24) 

 

where 𝑦𝑡  is 𝑁 × 1  vector of endogenous variables, 𝐹𝑡  is 𝐾𝑚𝑎𝑥 × 1  vector of factors, 𝑒𝑡  is 

𝐾𝑚𝑎𝑥 × 1 vector of shocks, 𝑒𝑡
𝑜𝑏𝑠 is 𝑁 × 1 vector of observable errors, 𝐴, 𝐵1,…, 𝐵𝑝, 𝐶 and 𝐷 are 

matrices of 𝐾𝑚𝑎𝑥 × 1, 𝐾𝑚𝑎𝑥 × 𝐾𝑚𝑎𝑥, …, 𝐾𝑚𝑎𝑥 × 𝐾𝑚𝑎𝑥 ,  𝑁 × 1 and 𝑁 × 𝐾𝑚𝑎𝑥  coefficients, 𝜎𝑜𝑏𝑠 

is 𝑁 × 1 vector of scale parameters, 𝑎 is 𝐾𝑚𝑎𝑥 × 1 vector of estimated hyperparameters, 𝜎𝐴, 

𝜎𝐵, 𝜎𝐶 , 𝜎𝐷,, 𝜇𝜎,𝑜𝑏𝑠 and 𝜎𝜎,𝑜𝑏𝑠 are non-estimated hyperparameters. Note, that 𝐾𝑚𝑎𝑥 is assumed 

to be upper bound for the number of factors and vector of hyperparameters 𝑎  chooses 

relevant factors. 

 

                                                        
7 See Krueger, Huang, Islam, Turner, Lacoste and Courville (2018) for ML applications. 
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Experiments 

All experiments were run in Tensorflow8 (see Abadi et al. (2016)) on a Desktop PC 

with the following specifications: Intel(R) Core(TM) i5-4210U CPU @ 1.70 GHz 2.40 GHz and 

RAM 4 GB. For training models we use Adam optimiser (see Kingma and Ba (2014)) with the 

learning rate 0.0019 with slight modifications which will be described separately for each 

model. In experiments with NF approximation we set 𝑀 = 50 , 𝐾 = 20  (except for SBL 

regression with 10 covariates), tanh nonlinearity and use Xavier style initialisation (with 

slight modification for DFM). Firstly, for each model we run an experiment10 with artificial 

data and then with real data (except for SBL regression). We also standardise data before 

real data experiments. 

 

Sparse Bayesian learning regression 

For SBL regression we can directly compare the performance of mean-field and NF 

approximations with respect to exact marginal likelihood optimisation. For this comparison, 

we randomly generated covariates from random normal distribution and multiply then by 

random matrix. Coefficients were generated from normal distribution and then multiplied 

by vector of discrete 0/1 random variables with a different degree of sparsity for 

experiments. All models were estimated with 50,000 iterations of Adam. 

Six experiments were run for 10/50 covariates, 0.2/0.5/0.8 sparsity 11  and 100 

observations. In all experiments except for one mean-field and NF approximations choose 

similar structure to the direct marginal likelihood optimisation (see Figures 1–2). Also note 

that ELBO and marginal likelihood12 are close to maximum likelihood (ML) values (see Table 

1). Even for the mean-field approximation with 10 covariates and 0.8 sparsity where the 

structure is different from other models, ELBO and marginal likelihood are close to ML. 

 

Bayesian vector autoregression with sparse priors and t-Student errors 

To demonstrate the ability of VB algorithms for optimisation of lower bound of 

marginal likelihood with respect to hyperparameters and choosing right sparse structure for 

Bayesian vector autoregression with sparse priors and t-Student errors, we generate 3 time 

series (see Figure 3) with a diagonal covariance matrix, 15, 20 and 30 degrees of freedom, 5 

lags and sparse structure. Models with 30, 100 and 1000 points are estimated using 50,000 

iterations of the Adam 

                                                        
8 Note that for SGVB one may use flexible frameworks for Bayesian estimation such as Stan (see Stan Development 

Team (2016)), Edward (see Tran, Kucukelbir, Dieng, Rudolph, Liang and Blei (2017), Tran, Hoffman, Saurous, 

Brevdo, Murphy and Blei (2017)) and PyMC3 (Salvatier, Wiecki and Fonnesbeck (2016)) to avoid tedious code 

writing. 
9 Despite the fact that conditions for convergence don’t hold for this learning rate it often used in ML and usually 

works well in practice. We discuss the choosing of optimiser in Section 6. 
10 Each experiment was run at least 3 times. In tables and graphs we show the best result. 
11 In this subsection degree of sparsity denotes expected number of nonzero coefficients. 
12 Marginal likelihood is estimated via 100,000 importance sampling draws. 
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Table 1. ELBO and marginal likelihood for SBL regression 

 

algorithm. Results for mean-field, NF and OLS estimates13,14 of coefficients are shown in 

Figures 4–6. VB approximations produce sparse solutions for all dataset sizes. For 30 points, 

the OLS estimate is not sparse and the NF approximation has lower sparsity than the mean-

field approximation, but of course this relation between NF and mean field algorithms is data 

dependent. However, as expected this sparsity does not imply better estimates. It can be seen 

from Table 2 that ELBO and marginal likelihood are larger for NF approximation. It is also 

fulfilled for 100 and 1000 points. Note that for 100 and 1000 points, VB algorithms choose 

predictors with 1 and 0 errors respectively, while OLS implies near-zero coefficients only for 

1000 points. 

For the experiment on real data, we choose a dataset with 7 variables from Giannone, 

Lenza and Primiceri (2015). Unlike in Giannone, Lenza and Primiceri (2015) log of real GDP, 

GDP deflator, real consumption, real investment, hours worked and real compensation per 

hours were differentiated; federal fund rate was used without any changes. Similarly to 

artificial data we estimated model with 5 lags, so finally dataset consists of 194 points from 

1960Q3 to 2008Q4. As an alternative to VB algorithms, we applied the Gibbs Sampling 

algorithm estimated via NF hyperparameters. We also show OLS coefficients to illustrate 

absence of sparsity. Estimates are visualised in Figure 7. In general, results are consistent 

with findings for artificial data. As in the case of artificial data, the NF algorithm has a larger 

ELBO and marginal likelihood (see Table 2), but the difference between marginal likelihood 

and ELBO is approximately equal. It means that NF distribution underfits true posterior. 

Visually, mean estimates for Gibbs Sampling and NF algorithms are similar (see Figure 7). 

Correlations for a number of individual pairs of coefficients have less similarity, but remain 

close in average (see Figure 8). The maximum absolute (mean) difference between means is 

equal to 0.03 (0.002), while for correlations is 0.45 (0.02). We discuss potential sources and 

consequences of the underfitting in the next Section. 

 

Bayesian neural network 

Using the same 3 time series of artificial data and US Data, we ask VB algorithms to 

estimate BNN with 30 (10) neurons for first (second) layer and LeakyReLu nonlinearity to 

show the ability of algorithms to work with nonlinear models. The previously used Adam 

algorithm for some experiments converges to poor local optimums with near zero 

                                                        
13 For Bayesian estimates we show mean results. 
14 All coefficients are estimated using 100,000 draws. 

 

MF NF MF NF ML

Artificial data, 10 covariates, 0.2 sparsity -158.4 -159.9 -158.2 -158.8 -158.1

Artificial data, 10 covariates, 0.5 sparsity -164.3 -164.9 -163.3 -163.3 -162.9

Artificial data, 10 covariates, 0.8 sparsity -177.1 -175.7 -175.6 -174.7 -174.6

Artificial data, 50 covariates, 0.2 sparsity -187.9 -190.9 -184.4 -185.9 -183.9

Artificial data, 50 covariates, 0.5 sparsity -246.4 -244.7 -241 -240.2 -239

Artificial data, 50 covariates, 0.8 sparsity -259.8 -254.1 -252.5 -248.7 -247.8

ELBO Marginal likelihood
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coefficients, so we modified it. 10,000 iterations were run as previously. After that 𝑑 and 𝜎 

were fixed and replaced for the next 5000 iterations with large (50) and small (0.01) values 

respectively. The subsequent iterations were run via Adam algorithm. The second part of the 

algorithm helps us to “overfit” data, so optimiser is guided to have non-zero coefficients. The 

total number of iterations for artificial and real data is 50,000 and 100,000 respectively15. 

 

 
Table 2. ELBO and marginal likelihood, Bayesian vector autoregression with sparse priors 

and t-Student errors 

 
Table 3. ELBO and marginal likelihood, Bayesian neural network 

 

Figures 9–17 show estimates for 𝑊1, 𝑊2 and 𝑊3 for models with 30, 100 and 1000 

points. Table 3 shows ELBO and marginal likelihoods. For all models, BNN achieves close 

ELBO results to BVAR with sparse priors and t-Student errors, which has well estimates and 

contains true data generating process. Moreover, NF approximation achieves a better 

marginal likelihood than BVAR for all dataset sizes. We also found that ELBO for mean-field 

approximation for 30 and 100 points is larger than for NF approximation. It is a consequence 

of the optimisation procedure, but it is not the case for a lower learning rates NF (see next 

Section). An interesting fact is that all models have small fraction of non-zero elements and 

the structure of neurons are similar to BVAR structure. For example, the first variable in NF 

approximation for 100 points depends on neuron8. This neuron depends only on neuron3, 

which is a transformation of first lag of the first variable. 

For the US Data, BNN significantly improves in-sample fit of BVAR with sparse priors 

and t-Student errors (see Tables 2–3). Additionally, note that both approximations choose 

in the first layer the larger number of neurons than the number of variables (see Figures 18–

20). These results may be signals for importance of non-linearity for forecasting, but we did 

not test this and leave investigation of forecasting/overfitting properties of sparse model for 

macrodata for further research. 

                                                        
15 We also tried to apply different types of annealing, but found that this algorithm works better. The combination of 

algorithms shows comparative results. 

MF NF MF NF

Artificial data, 30 points -172.4 -159.7 -169.5 -158.1

Artificial data, 100 points -522.9 -515.5 -516.9 -514.6

Artificial data, 1000 points -4692.7 -4687.4 -4682.1 -4681.6

US Data -1374.5 -1362.9 -1364.1 -1352.7

ELBO Marginal likelihood

MF NF MF NF

Artificial data, 30 points -165.9 -168.2 -157.9 -152.4

Artificial data, 100 points -525.7 -527.15 -512.4 -506.5

Artificial data, 1000 points -4697.5 -4702.6 -4681.9 -4679.2

US Data -1240.2 -1236.9 -1203.1 -1192.1

ELBO Marginal likelihood
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Table 4. Number of estimated factors 

 
Table 5. R-squared for regressions of factors estimates on true and 3 PCA factors 

 

Dynamic factor model 

Similarly to previous two subsections we firstly generated artificial data. Artificial 

dataset consists of 50 time series with 100 points. These time series are driven by 3 factors 

(see Figure 21). Shocks for factors were generated from the standard normal distribution; 

observation errors have standard deviation 0.3. We set 𝐾𝑚𝑎𝑥 = 10, so the total number of 

latent variables is more than 1500 which is compatible with BNN, but DFM has temporal 

dependence which might be potential source of difficulty. Adam algorithm with 50,000 

iterations was used for both approximations. 

It was found that mean-field and NF approximations choose correct number of factors 

in all experiments even when we estimate model with more than 1 lag (we run 5 experiments 

for 1–3 lags). Note that not all criteria from Bai and Ng (2002) choose correct number of 

factors (see Table 4) on these data. Because of the absence of factor normalization, estimated 

factors cannot be compared directly, and we regress mean of factors on true factors and 3 

PCA components. Table 5 demonstrates that estimates are similar to the true factors. To 

illustrate the ability to recover data the product of factors and loadings was sampled. These 

data approximations plus noise from (23) are shown in Figures 22–24. Both approximations 

lie near true data. 

MF NF PCA

Factor 1 0.997 0.996 0.995

Factor 2 0.992 0.997 0.992

Factor 3 0.997 0.993 0.984

Factor 1 0.998 0.998 1

Factor 2 0.992 0.997 1

Factor 3 0.997 0.993 1

True

PCA

Artificial data US Data

MF 3 20

NF 3 20

IC1 6 9

IC2 3 7

IC3 10 20

PC1 9 18

PC2 7 17

PC3 10 20

AIC1 10 20

AIC2 10 20

AIC3 10 20

BIC1 10 20

BIC2 10 20

BIC3 3 7
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Table 6. ELBO and marginal likelihood, DFM 

 
Table 7. R-squared for regressions of factors estimates on 20 PCA factors, 1 lag 

 

These models with 𝐾𝑚𝑎𝑥 = 20 were applied for the September release16 of monthly 

FRED database (see McCraken and Ng (2016)). We choose the maximal balanced panel from 

this dataset, so the final dataset consists of 128 series and 314 time periods. Models with 1–

3 lags were estimated. In all cases mean-field and NF approximations choose 20 factors, in 

opposite to other criteria (see Table 4). For the US data as for the artificial data, mean-field 

outperforms NF approximation in terms of ELBO and marginal likelihood (see Table 6), but 

it is effect of optimisation procedure and partially discussed in next Section17. In opposite to 

artificial data, estimated factors are less related to PCA factors (see Table 7). Note, however, 

that for factors with large means of loadings R-squared is near 0.9 (see Figures 25–27). 

Loadings cannot be directly interpreted as an importance of factors (factors are not scaled, 

multimodality of distribution may appear18 or, probably, we do not use enough lags), but it 

is a signal for that and have to be investigated later. Finally, we compared ability to recover 

true data of NF approximation and Gibbs Sampling given NF hyperparameters. In fact, it is a 

                                                        
16 Data set was downloaded at 1 October, 2018. 
17 For instance, we run additional 50,000 iterations for artificial data with 0.0001 learning rate and achieve ELBO: -

3002.8 and marginal likelihood: -2971.3. 
18 Visually, we did not found multimodality in our estimates. 

MF NF MF NF

Artificial data -3013.1 -3023.2 -2973.9 -2979.1

US Data, 1 lag -39373 -40406 -39141 -40169

US Data, 2 lags -40343 -40622 -40050 -40420

US Data, 3 lags -40889 -41082 -40550 -40668

ELBO Marginal likelihood

MF NF

Factor 1 0.22 0.89

Factor 2 0.38 0.5

Factor 3 0.94 0.98

Factor 4 0.65 0.94

Factor 5 0.7 0.14

Factor 6 0.35 0.66

Factor 7 0.91 0.97

Factor 8 0.99 0.68

Factor 9 0.98 0.97

Factor 10 0.68 0.87

Factor 11 0.07 0.72

Factor 12 0.94 0.86

Factor 13 0.35 0.4

Factor 14 0.98 0.96

Factor 15 0.28 0.4

Factor 16 0.49 0.79

Factor 17 0.76 0.64

Factor 18 0.56 0.26

Factor 19 0.98 0.59

Factor 20 0.15 0.14
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comparison of recovering data given the same hyperparameters, so as in the case of BVAR it 

compares Bayesian parts of model. Figure 28 shows 6 randomly chosen series from dataset. 

Both algorithms demonstrate approximately the same estimates and capture main 

tendencies in data dynamics. For the most series, estimates are close to PCA with 20 factors, 

which is the best Frobenius norm estimate. 

 

Discussion and Further Directions 

Experiments show that mean-field and NF approximation might be useful for 

optimisation of marginal likelihood. As expected, NF approximation outperforms mean-field 

approximation for all models except for DFM model and number of SBL regressions, but we 

found some intuitively unusual results. Firstly, for a number of models the ELBO of mean-

field approximation is larger than ELBO of NF approximation. The main reason of such 

behavior of models is optimisation procedure. For a bad initialisation, models may fall into 

poor local optimum. The non-decreasing learning rate is an alternative source of the 

problem. We found that both factors play significant role, but the second one is more 

important in investigated models. The number of additional experiments showed that using 

a decreasing schedule for the learning rate NF approximation helps to achieve better results; 

however, it requires much more iterations. Secondly, for a number of experiments the 

marginal likelihood is closer to ELBO for a mean-field approximation. This problem is similar 

to the first one and can be mitigated by decreasing schedule for the learning rate. 

Alternatively, the larger number of samples can be used for decreasing the variance of ELBO 

gradient. Achieving better results for NF approximations of DFM and SBL regression and 

decreasing the gap between ELBO and marginal likelihood can be done in the same ways. 

We also noted that initialisation plays crucial role for state space models, especially, 

for coefficients of equation for factors. If eigenvalues of a generated matrix are more than 1, 

factors will be extremely large generating NaNs in the computation procedure. There are 

many solutions, but we tried two: clipping factors and initialising model with near zero 

matrices. Finally, we decided to merge these procedures, because the former ensures the 

absence of NaNs, but gradients may be large and the latter rarely produces NaNs in some 

experiments. 

The computational time is a cornerstone of Bayesian inference. No experiment with 

mean-field approximation took us more than 1 hour19. NF approximations took us no more 

than 3 hours20. The most time consuming model is DFM. Probably, our realisation is not 

optimal and can be improved, but we found this time acceptable. One may easily use GPU 

and TPU (provided, for example, for free by Google Colab) or other programming languages 

to speed up computations. Interestingly, NF falls into the neighbourhood of final point after 

few thousands of iterations in opposite to mean-field approximations and drifts slowly after 

that. This fact can be used for high-dimensional model with few hyperparameters to stop 

model running earlier and apply IS algorithm. 

We run only small fraction of possible experiments and just illustrated the potential 

of described techniques. We leave for further research forecasting properties of estimated 

models which is one of the main goals of building macromodels. There are a lot of other 

                                                        
19 For US data, BVAR - 5 minutes, NN - 20 minutes, DFM – 50 minutes. 
20 For US data, BVAR - 20 minutes, NN - 40 minutes, DFM – 2 hours 40 minutes. 
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directions for further research including optimisation procedure and the form of NF 

approximation. The optimisation procedure may be modified by changing the learning rate 

schedule or increasing/decreasing number of iterations. One may use other stochastic 

optimisation procedures such as momentum (see Polyak (1964)), Nesterov momentum (see 

Nesterov (1983)), AdaGrad (see Duchi, Hazan and Singer (2011)), RMSProp (see Hinton 

(2012)), ADVI optimiser (see Kucukelbir, Tran, Ranganath, Gelman and Blei (2017)), restart 

optimisers (see Loshchilov and Hutter (2017)) and AddSign/PowerSign (see Bello, Zoph, 

Vasudevan and Le (2017)). NF approximation also requires choosing a number of 

hyperparameters such as depth and width. Moreover, as was mentioned in introduction 

other types of NF approximation exist and might be estimated. Even for the presented model, 

the properties under different parameters of generated data (different noise to signal ratios, 

misspecified models and so on) have to be investigated. The formal comparison of accuracy 

and speed with MCMC methods is also important, but our experience shows that VB methods 

are usually faster to achieve the adequate accuracy, especially in large scale applications 

(where the closed or simple Gibbs Sampling form are not available). 

Only sparse models were investigated in the paper, but that was not the goal. Of 

course, many models with intractable marginal likelihood and/or posterior (with and 

without hyperparameters) can be estimated via presented algorithm. Moreover, estimated 

approximations can be used not directly, but as proposal densities for other algorithms such 

as importance sampling. 

We should mention that we tried to estimate the ABM model which lies in the class of 

state space models, but its efficient realisation in Tensorflow requires considerable effort 

and lies outside of the scope of this paper. 

 

Conclusion 

We demonstrated the applicability of SGVB algorithm for three different classes of 

models. We applied traditional mean field approximation and more flexible NF 

approximation. The results showed that the SGVB algorithm is fast and relatively accurate, 

but we have a long way to go for full understanding the properties of approximations for 

macrodata. We hope that our paper will be a starting point for investigating properties of 

described algorithms for macromodels. 
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Appendix A 

 

 

 
Figure 1. Artificial data estimates for sparse Bayesian learning regression, 10 covariates 
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Figure 2. Artificial data estimates for sparse Bayesian learning regression, 50 covariates 

 

 

 

 
Figure 3. Artificial data for Bayesian vector autoregression with sparse priors and t-Student 

errors 
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Figure 4. Estimation results for matrix 𝐵 using 30 points from artificial data 
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Figure 5. Estimation results for matrix 𝐵 using 100 points from artificial data 
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Figure 6. Estimation results for matrix 𝐵 using 1000 points from artificial data 
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Figure 7. Estimation results for matrix 𝐵, US Data 
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Figure 8. Correlation of coefficients, Bayesian vector autoregression with sparse priors and 

t-Student errors 
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Figure 9. Estimation results for matrix 𝑊1 using 30 points from artificial data 

 

 

 
 

 
Figure 10. Estimation results for matrix 𝑊2 using 30 points from artificial data 
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Figure 11. Estimation results for matrix 𝑊3 using 30 points from artificial data 

 

 

        
Figure 12. Estimation results for matrix 𝑊1 using 100 points from artificial data 
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Figure 13. Estimation results for matrix 𝑊2 using 100 points from artificial data 

 

 

 

 

 

 
 

 
Figure 14. Estimation results for matrix 𝑊3 using 100 points from artificial data 
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Figure 15. Estimation results for matrix 𝑊1 using 1000 points from artificial data 

 

 

 
 

 
Figure 16. Estimation results for matrix 𝑊2 using 1000 points from artificial data 
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Figure 17. Estimation results for matrix 𝑊3 using 1000 points from artificial data 
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Figure 18. Estimation results for matrix 𝑊1, US Data 
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Figure 19. Estimation results for matrix 𝑊2, US Data 

 

 
Figure 20. Estimation results for matrix 𝑊3, US Data 
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Figure 21. Artificial factors for DFM model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Stochastic Gradient Variational Bayes and Normalizing Flows for Estimating Macroeconomic Models        37 

 

Figure 22. Recovered artificial data (5th, 50th and 95th quantities), DFM 

Figure 23. Recovered artificial data (5th, 50th and 95th quantities), DFM 

Figure 24. Recovered artificial data (5th, 50th and 95th quantities), DFM 

 



Stochastic Gradient Variational Bayes and Normalizing Flows for Estimating Macroeconomic Models        38 

 

Figure 25. Factor loadings, US Data 
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Figure 26. Factor loadings, US Data 
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Figure 27. Factor loadings, US Data 
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Figure 28. Recovered US data (50th quantity), DFM 
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Figure 29. Estimation results for matrix 𝐵, non-diagonal, US Data 
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Figure 29. Estimation results for matrix 𝐵, non-diagonal, US Data (continues) 
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Figure 30. Estimation results for matrix W1, mean-field , non-diagonal, US Data 
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Figure 31. Estimation results for matrix W1, NF , non-diagonal, US Data 
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Figure 32. Estimation results for matrix 𝑊2, mean-field , non-diagonal, US Data 

 

 

 

 

 

 
Figure 33. Estimation results for matrix 𝑊2, NF , non-diagonal, US Data 
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Figure 34. Estimation results for matrix 𝑊3, mean-field , non-diagonal, US Data 

 

 

 

 

 

 

 

 

 

 

 

 



Stochastic Gradient Variational Bayes and Normalizing Flows for Estimating Macroeconomic Models  48 

 
 

 
 

Figure 35. Estimation results for matrix 𝑊3, NF , non-diagonal, US Data 
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Appendix B 

The matrix was estimated in the main part of the paper for models with diagonal 

covariance. Here we show results for Bayesian vector autoregression with sparse priors and t-

Student errors, and the Bayesian neural network with a non-diagonal covariance matrix. 

Equations (14) and (19) do not restrict matrix 𝐶, but we faced computational problems 

calculating its log-determinant in Tensorflow. To avoid this problem, we set 𝐶 to be triangular 

with ones in diagonal, so the log-determinant is zero. Estimation results for US Data are shown 

in Figures 29–35. Table 8 demonstrates that the non-diagonal covariance matrix significantly 

improves ELBO and marginal likelihood of the models. 

 

 
 

Table 8. ELBO and marginal likelihood, non-diagonal 

 

 
 
 

 

MF NF MF NF

BVAR, US Data -1374.5 -1362.9 -1364.1 -1352.7

BVAR, US Data, non-diag -1131.1 -1122.3 -1118.1 -1114.4

BNN, US Data -1240.2 -1236.9 -1203.1 -1192.1

BNN, US Data, non-diag -1077.3 -1042.5 -1046.9 -1013.8

ELBO Marginal likelihood


