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Abstract 
 

We evaluate the forecasting ability of machine learning models to predict bank license 
withdrawal and the violation of statutory capital and liquidity requirements (capital adequacy 
ratio N1.0, common equity Tier 1 adequacy ratio N1.1, Tier 1 capital adequacy ratio N1.2, 
N2 instant and N3 current liquidity). On the basis of 35 series from the accounting reports of 
Russian banks, we form two data sets of 69 and 721 variables and use them to build random 
forest and gradient boosting models along with neural networks and a stacking model for 
different forecasting horizons (1, 2, 3, 6, 9 months). Based on the data from February 2014 
to October 2018 we show that these models with fine-tuned architectures can successfully 
compete with logistic regression usually applied for this task. Stacking and random forest 
generally have the best forecasting performance comparing to the other models. We evaluate 
models with commonly used performance metrics (ROC-AUC and F1) and show that, 
depending on the task, F1-score could be better at defining the model’s performance. 
Comparison of the results depending on the metrics applied and types of cross-validation 
used illustrate the importance of choosing the appropriate metric for performance evaluation 
and the cross-validation procedure, which accounts for the characteristics of the data set and 
the task under consideration. The developed approach shows the advantages of non-linear 
methods for bank regulation tasks and provides the guidelines for the application of machine 
learning algorithms to these tasks. 

 
 
Keywords: machine learning, random forest, neural networks, gradient boosting, 

forecasting, bank supervision 
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Introduction 

Since 2013 the Bank of Russia has moved toward an active policy aimed at the 

enhancement of the financial stability of the banking sector. It has only increased the interest 

in forecasting the withdrawal of bank licenses and fuelled further analysis of this subject. 

A wide range of research is devoted to the analysis of the Russian banking sector, 

namely, to the forecasting of the bank license withdrawal and to the determination of the key 

factors affecting a bank’s efficiency and the possible interruption of its activity. The research 

on license withdrawal differs among others in the time period analysed, whether or not the 

distinction is made between the reasons of license withdrawal or the macroeconomic 

variables are included in the model or not. However, the analysis is usually based on logistic 

regression (logit-model) estimated on the quarterly data. This methodology is widely applied 

in the analysis of Russian bank defaults and license withdrawals (Styrin (2005), Lanine, 

Vennet (2006), Peresetsky et al. (2011)). Sinelnikova-Muryleva et al. (2018) is one of the first 

attempts to apply machine learning models to Russian banks’ data on license withdrawal. 

They forecast bank defaults with logit-models and random forest with the predefined 

architecture based on quarterly data, underlining the potential of the random forest model to 

compete with the logit-model. 

We contribute to the literature by applying several machine learning algorithms with the 

optimal architecture to the forecasting of bank license withdrawal and violation of regulatory 

banking requirements to Russian banks accounting data. We consider several machine 

learning models, namely, random forest, gradient boosting, neural networks and logit-model 

widely used in previous research on license withdrawal. We define the optimal model 

architectures to forecast bank license withdrawal (both the case of actual license withdrawal 

and bank liquidation) and the violation of the five requirements: capital adequacy ratio 

(N1.0)1, common equity Tier 1 adequacy ratio (N1.1)2, Tier 1 capital adequacy ratio (N1.2)3, 

instant and current liquidity requirements (N2 and N3). In both tasks we additionally develop 

an ensemble based on the models with the best forecasting properties. We compare the 

results of machine learning models and the logit-model with the optimal architecture. The 

optimal architecture is chosen for the forecasting horizons of one, two, three months, half of 

                                                        
1 Capital adequacy ratio (Н1.0) represents ratio of own funds (capital) of credit institutions to total risk-weighted 
assets. 
2 Common equity Tier 1 adequacy is a ratio of common equity (capital) of credit institutions to total risk-weighted 
assets. 
3 Tier 1 capital adequacy (Н1.2) represents ratio of core equity (capital) of credit institutions to total risk-weighted 
assets. 
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year and 9 months based on the monthly data from February 2014 to October 2018. We 

consider two datasets, containing 69 and 721 variables, based on 35 publicly available 

indicators from bank accounts.4 

One of the key differences of this research from the others devoted to the forecasting 

of bank license withdrawal is that we apply several machine learning algorithms, allowing us 

to incorporate the nonlinear relationship between variables and to define the optimal 

architecture for the model of each type and each forecasting horizon. With the aim of 

illustrating the application of machine learning techniques to economic forecasting tasks, we 

compare the performance of these algorithms with the optimal set of hyperparameters to the 

logistic regression usually used in the forecasting of the license withdrawal. To the best of 

our knowledge this is the first comparison of such machine learning techniques as random 

forest, gradient boosting, neural networks and stacking and their application to the license 

withdrawal task and regulatory requirements violation on the Russian banks’ microdata. 

Moreover, the forecasting of the violation of bank requirements has not been previously 

considered in the literature. In contrast to most of the research, estimation is based on the 

monthly data, with the optimal model architecture defined for horizons from 1 to 9 months. 

Particular attention is paid to the proper choice of the performance metric and to the impact 

of the data splitting type during cross-validation on the final results. Incorrect data splitting 

methods can lead to less-than-optimal choice of the model architecture for forecasting. 

During data splitting into training and testing samples the chronological order of observations 

is also important: random splitting can lead to factitiously high metric values. 

In the case of license withdrawal all considered models have the comparable 

forecasting accuracy. At the same time, the application of machine learning techniques and 

the choice of optimal architecture allow us to obtain more accurate forecasts than those 

based on the logit-models used in previous research. In the forecasting of the violation of 

capital adequacy ratios several nonlinear models have higher forecasting performance than 

the logit-model. Namely, the random forest model has the highest accuracy for most 

forecasting horizons. In the forecasting of instant and current liquidity ratios all considered 

models have a comparable accuracy inside-the-margin-of-error. This accuracy is lower than 

the one in the forecasting of capital ratios. 

Regarding the example of Tier 1 capital adequacy ratio we show how the procedure of 

data splitting on cross-validation affects the results: performance metrics on cross-validation, 

                                                        
4 The accounting forms are available on the Bank of Russia website in the corresponding section. 

http://cbr.ru/credit/forms/
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and thus, the choice of the optimal model highly depends on the splitting methodology, which 

can significantly affect the forecasting performance of models. We also check the robustness 

of the results on the dataset of 721 variables formed on the basis of the previously used 69 

variables. This data extension does not qualitatively increase the forecasting performance of 

the considered models. 

This paper has the following structure. The next section gives a brief overview of the 

literature of the forecasting of license withdrawal based on the data of Russian banks and 

several papers on the US data related to current research methodologically. The following 

section provides details on the estimated models and key hyperparameters used in the 

search for the optimal model architecture in forecasting license withdrawal and violation of 

requirements. Section 3 covers the description of the data, forecasting performance metrics 

and the cross-validation. Section 4 provides the results of model estimation and the model 

choice in both forecasting tasks. The emphasis is made on the proper choice of performance 

metrics. The summary of the results is provided in the Conclusion. 

1. Literature review 

A variety of foreign and domestic research on banking data is devoted to the forecasting 

of license withdrawal and the reasons for license withdrawal. Karas et al. (2010) use Russian 

bank data to analyse the link between the bank’s efficiency and the property type. It is 

followed by Belousova et al. (2018) who also consider how the property type influences the 

efficiency of Russian banks during 2004-2015 based on quarterly data. Claeys et al. (2005) 

and Claeys, Schoors (2007) define which factors affect the license withdrawal of Russian 

banks. Fungáčová, Solanko (2009) analyse the link between bank characteristics and the 

degree of risk-taking on the basis of quarterly data from 1999 to 2007. 

Peresetsky et al. (2011) and Peresetsky (2007, 2012) apply the binary choice model to 

the forecasting of a bank default considered as a license withdrawal. Their research is 

followed by Peresetsky (2013), who makes the distinction between different reasons for 

license withdrawal from the second quarter of 2005 to the end of 2008. The probability of 

license withdrawal is forecasted one year in advance on the basis of macro and financial 

time-series. With a logit-model Peresetsky (2013) forecasts the probability of license 

withdrawal, license withdrawal due to money laundering, due to both money laundering and 

economic reasons and the withdrawal only due to economic reasons (economic 

inconsistency). For each of these reasons Peresetsky (2013) estimates three models on 

different datasets: the model with both macro and micro variables, and two models which 
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include either micro or macro variables. He also estimates the model of multiple choice for 

different reasons of license withdrawal, showing that it does not provide higher forecast 

accuracy than the binary choice model. To deal with an unbalanced dataset Peresetsky 

(2013) uses the subsampling method similar to the one proposed by Peresetsky (2007). 

Another approach to solve the problem of the unbalanced datasets is applied by 

Emelyanov, Briukhova (2013). The authors estimate the logit-model in order to forecast the 

probability of the default of Russian commercial banks on the basis of the monthly accounting 

data from 2010 to 2011. In the following research Emelyanov, Briukhova (2015) underline 

the importance of addressing the unbalanced dataset problem which occurs when dealing 

with banking data (the low share of license withdrawal) and the need to choose the optimal 

structure of the subsample. They show that when this problem is solved the model 

forecasting accuracy increases on the basis of 12 financial variables for the horizon from 1 

to 8 months in advance. They solve it by a bootstrap method, including only part of the banks 

that did not lose their license and all the banks whose license was withdrawn in the dataset.5 

After that, they choose the share of licenced banks in the whole sample, considering, 

however, only the licenses withdrawn due to financial reasons. 

On the basis of the data from 1998 to 2011, Karminsky, Kostrov (2013) illustrate the 

existence of a quadratic relationship between the probability of a bank default and its size, 

capital adequacy and profitability. Additionally, they show that accounting for macroeconomic 

variables and time factor helps to increase substantially the model’s accuracy. Karminsky, 

Kostrov (2013) determine the negative relationship between the default probability and 

monopolistic power. This result coincides with Fungacova, Weill (2009) who analyse on the 

basis of the logit-model how the market power affects the license withdrawal of Russian 

banks based on the quarterly data from 2001 to 2007. Their result is robust to the use of 

different measures of the market power and the definition of bank failure. Fungacova, Weill 

(2009) also illustrate the negative impact of the bank size on the bank failure, which is 

statistically significant in most specifications confirming the results of Claeys et al. (2005) and 

Claeys, Schoors (2007). In their recent paper Karminsky, Kostrov (2017) estimate a logit-

model to forecast bank defaults with negative capital based on the quarterly data from 2010 

to the first half of 2015. In order to deal with the unbalanced sample, the authors modify the 

maximum likelihood function. 

                                                        
5 Review of the solutions for unbalanced sample problem is provided in e.g. He, Garcia (2008), Ganganwar 
(2012), Sonak, Patankar (2015). 
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Bidzhoyan, Bodganova (2017) also use both macro- and financial annual time-series of 

banks’ activity in the forecasting with the logit-model the probability of license withdrawal 

faced by Russian banks. They show that the inclusion of median, standard deviation and 

dispersion of macro variables increases the accuracy of the forecast compared to the model 

with an average exchange rate and other macro variables. Nevertheless, this improvement 

in the sensitivity is not significant, while the total accuracy rises by 0.77% (from 69.97% to 

70.74%). Bidzhoyan (2018) also estimates the logit-model on 43 variables including the 

characteristics of macro variables volatility based on quarterly data of Russian banks for the 

period from 2012 to 2016. He uses the RIDGE logit-model as a way to deal with 

multicollinearity in economic and financial data. The total accuracy of the model is 77.8% 

while the correctly forecasted license withdrawals on the test set is only 66.2%, presumably 

because only economic reasons are included in the analysis. 

One of the latest analyses of Russian banks data is Mäkinen, Solanko (2017) (Mäkinen, 

Solanko (2018)). They analyse the role of CAMEL variables in explaining the closure of 

Russian banks and estimate the logit-model, defining the key factors in license withdrawal of 

Russian banks based on the monthly data from July 2013 to July 2017. They show that the 

change in CAMEL variables (capital, asset quality, management, earnings and liquidity) are 

always significant in explaining the license withdrawal, and become less important in the 

longer lags.6 At the same time the liquidity level is the only factor which remains important in 

the lags longer than one month. 

The other domain of the research of the Russian banking sector is the modelling of 

bank credit ratings using ordered choice models (Soest et al. (2003), Peresetsky (2009), 

Peresetsky, Karminsky (2007, 2011), Vasiluk, Karminsky (2011)). One of the most recent 

papers is by Peresetsky, Zhivaikina (2017) who analyse the link between bank credit ratings 

and the possibility of license withdrawal of Russian banks. On the basis of quarterly data 

from 2012 to 2016 they define the agencies (S&P, Moody’s, “Expert RA”) whose ratings 

enable better forecast license withdrawal. They, however, show that models of binary choice 

estimated to project license withdrawal have the higher forecasting accuracy comparing to 

the models based on ratings. 

It can be seen that logistic regression is the most widely used model in the research 

devoted to the forecasting of licence withdrawal. There are significantly fewer cases of the 

application of machine learning models to the forecasting tasks based on banking data. 

                                                        
6 Abbreviation CAMEL stands for capital, asset quality, management, earnings and liquidity. 
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Sinelnikova-Muryleva et al. (2018) is one of the first attempts to apply machine learning 

models to Russian bank data on license withdrawal. They forecast bank defaults with logit-

models and random forest with the predefined architecture based on the quarterly data from 

2015 to the first quarter of 2017. According to their results, the random forest model provides 

an extremely low error (MAE level) outperforming the logit-model, with a small difference in 

models errors. However, these results can be explained by a very short test sample (1 

quarter) with only four forecasted events occurring and the increase in the model accuracy 

compared to the logit-model coming entirely from better predictions of the major class (no 

default) at the expense of better default forecasting. Nevertheless, Sinelnikova-Muryleva et 

al. (2018) show the potential gains which can come from the use of machine learning 

techniques. The most relevant to the current research in the application of a wider range of 

machine learning techniques are Mai, Baek (2012) and Petropoulos et al. (2017) who 

forecast bank bankruptcy in the USA and Bagherpour (2017) who analyses mortgage loan 

defaults. 

Mai, Baek (2012) forecast bankruptcy of US banks with quarterly data on financial 

accounts and economic variables from 2002 to 2011. They apply logit-model and support 

vector machines (SVM) with different kernel function specifications, using the cross-

validation to choose the optimal set of features, included in both the logit-model and SVM 

model. As opposed to the logit-model with close levels of recall and precision on test and 

cross-validation, the SVM model with polynomial kernel has a higher forecasting 

performance on the test set with lower levels of recall and precision than those of the logit-

model. Mai, Baek (2012) suggest that searching for the optimal set of features specifically 

for the SVM model can improve the results. They also analyse the errors which may occur in 

forecasting, defining the errors linked to forecasting of bank default “prematurely”, when the 

model predicts bankruptcy one quarter earlier than it actually occurs. Mai, Baek (2012) 

explain it by the close values of accounting variables of the bank in bankruptcy and one 

quarter prior to the event. The forecasting of US bank defaults is also analysed by 

Petropoulos et al. (2017). They consider a wide range of models and compare their 

performance based on the data from 2008 to 2014. The analysis includes logit-model and 

linear discriminant analysis as well as such machine learning algorithms as SVM, neural 

networks and random forest. They show that random forest has the best forecasting 

performance among the considered models. According to their results CAMELS variables on 

earnings and capital are the most important in bankruptcy forecasting compared to the 

others. 
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Bagherpour (2017) also compares the performance of different machine learning 

algorithms (factorization machines, K-nearest neighbours, random forest and SVM) with the 

logit-model. He considers the other binary classification problem, the prediction of defaults 

on mortgage loans, based on three data periods: prior to the financial crisis (2000-2006), 

during the financial crisis (2007-2011) and afterwards (2012-2015). Bagherpour (2017) 

shows that all machine learning models have a higher forecasting accuracy than the logit-

model: factorization machines have the best forecasting performance (88-91% ROC-AUC), 

followed by random forest and K-nearest neighbours (88% ROC-AUC on average for the 

whole data sample), outperforming logit-model (ROC-AUC – 85%). 

2. Models 

Here we consider two binary classification problems: the prediction of bank license 

withdrawal and the violation of requirements for capital and liquidity by Russian banks. The 

target variable equals 1 in the case of a license withdrawal (both the case of the actual license 

withdrawal and liquidation) or a requirement violation, and -1 otherwise. In both forecasting 

tasks we make predictions for 1, 2, 3, 6 and 9 months in advance. We consider the violation 

of five requirements: capital adequacy ratio (N1.0), common equity Tier 1 adequacy ratio 

(N1.1), Tier 1 common equity adequacy ratio (N1.2), instant (N2) and current (N3) liquidity. 

Below we present four separate models used in the forecasting, namely, logistic regression 

(Section 2.1), random forest (Section 2.2), gradient boosting (Section 2.3), neural networks 

(Subsection 2.4) and the ensemble of the best performing models, stacking (Section 2.5). 

2.1. Logistic regression 

Logistic regression is a linear model, widely used in classification tasks, including the 

forecasting of bank license withdrawal. One of the key advantages of the logit-model is its 

interpretability: it is usually possible to define how the change in the explaining variables 

affects the probability of a particular class. Moreover, taking into account the realization 

simplicity of this algorithm, the logit-model can be easily applied to data of a big size with 

modest requirements on computational capability. At the same time, one of the key 

drawbacks of this model is its low forecasting performance in case of a nonlinear relationship 

between the target variable and factors. 
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Here we use logistic regression with 
2L  regularization with different regularization levels 

and solution methods (Table 1). For a binary classification the following minimization problem 

is solved: 

where   are weights, C  stands for an inverse of regularization strength, TX  are input data 

and y  is a target variable which takes values of 1 or -1.7 

Table 1. Values of the parameters used in the estimation of the logistic regression 

Note: default values of hyperparameters are written in italics. 

2.2. Random forest 

Random forest is an ensemble model proposed by Breiman (2001). The random forest 

algorithm is known to often have higher accuracy than linear models and be less sensitive to 

the outliers in the data. As opposed to the logit-model it allows us to spot nonlinear 

relationships between the target and explanatory variables. At the same time, the results of 

this algorithm may be hard to interpret and it cannot be extrapolated to the new data. 

Moreover, the estimation of the random forest may require larger computational resources 

than the logit-model, which may limit the application of this algorithm to large-scale data. 

The algorithm of random forest is based on decision trees. Each tree is a graph model 

which consists of a set of rules on explanatory variables to obtain the target variable. This 

model has a tree structure with nodes as decision points. The split occurs according to a 

certain criterion on one of the explanatory variables, while terminal nodes (leaves) contain 

the value of the target variable. The decision tree is built in a stepwise manner: first, the 

sample is split into two subsamples according to the specified criterion, then each of 

subsamples is consequently split further, until a certain stop criterion is not reached.8 

                                                        
7 Logit-model, random forest and gradient boosting models are estimated with scikit-learn package (Python). 
We adjust the sample weights used in both these algorithms to deal with the unbalanced samples. Model 
estimation is conducted with a fixed random seed. 
8 Algorithm is presented in detail in Hastie et al. (2009), p. 588. 
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Hyperparameters Values 

solver newton-cg, lbfgs, liblinear, sag, saga 

inverse of regularization strength 1.5, 1.0, 0.5, 0.1, 0.05, 0.005 

maximum number of iterations 50, 100, 150, 200, 300, 350 



THE FINER POINTS OF MODEL COMPARISON IN MACHINE LEARNING:  
FORECASTING BASED ON RUSSIAN BANKS’ DATA AUGUST 2019 13 

 

13 

 

The random forest model can be expressed as follows. In a node m , in region 
mR  with 

mN observations, the share of observations of class k  in the node m  is: 

1
ˆ ( ).

m

K

mk i

x Rm

p I y k
N 

   (2) 

Observations in the node m  belong to the class with the highest number of observations,

ˆ( ) argmax .k mkk m p  In order to evaluate the quality of a split we use the Gini criterion:9 

'

' 1

ˆ ˆ ˆ ˆ(1 ).
K

mk mk mk mk

k k k

p p p p
 

    (3) 

In the case of a binary classification it transforms into 2 (1 )p p , where p  is a share of 

observations of the second class. 

Via cross-validation we choose the architecture which ensures the best forecasting 

performance of random forest models. The considered values of hyperparameters are given 

in Table 2. 

Table 2. Values of the parameters used in the estimation of random forest 
 

 

 
 

Note: default values of hyperparameters are written in italics. 

2.3. Gradient boosting 

Gradient boosting is another machine learning algorithm based on the combination of 

predictive models, decision trees in our case. In this form it was proposed by Friedman 

(2001). One of the advantages of a gradient boosting algorithm is its ability to generalize. It 

is often possible to build compositions, which outperform the basic algorithms. Gradient 

boosting can allows to identify outliers and to exclude them from the training set. However, it 

is known to have a tendency to overfit, while the stepwise approach of this algorithm can lead 

to a non-optimal set of weak learners. That is why it is highly important to choose optimally 

                                                        
9 Other criteria to measure the quality of a split are presented in Hastie et al. (2009), p. 309. Within a robustness 
check we have considered entropy as criterion for the slit. The results show that it does not alter the values of 
the performance metrics: for most of the cases the difference in the values of F1-score and ROC-AUC are not 
statistically significant in the both cases (license withdrawal and requirements violation). 

Hyperparameters Values 

number of estimators 100, 500, 800 

minimum number of samples in a leaf node 1, 2, 6 

maximum depth of a tree None, 5, 10, 25 

minimum number of samples required to split a node 2, 6 

maximum number of features auto, log2 
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the combination of the number of estimators and learning rate, which can help to avoid 

overfitting. 

Analytically gradient boosting can be expressed as an additive sum of more simple 

models: 

1

( ) ( ),
M

m m

m

F x h x


  (4) 

where ( )mh x  are basic functions, so-called weak learners (decision trees), and ( )m x  is a step 

length. The procedure of model estimation is the same in the case of classification and 

regression problem and differs only by type of loss function used. Gradient boosting is built 

in a stepwise manner in the following way: 

1( ) ( ) ( )m m m mF x F x h x  . (5) 

On each step the decision tree ( )mh x  is chosen optimally from the minimization of the 

loss function L  with a given 1mF   and 1( )m iF x : 

 1
, 1

( ) arg min , ( ) ( )
n

m i m i i
h i

h x L y F x h x






  . (6) 

The minimization problem is solved via steepest descent, whose direction is defined as 

a negative gradient of the loss function evaluated at the current model 1mF  . The step length 

( )m x  is chosen according to the equation (7): 

 1

1

arg min , ( ) ( )
n

m i m i m

i

L y F x h x


 



  . (7) 

Within the search for the optimal architecture we consider different model 

characteristics, including the specification of the loss function, the maximum depth of a tree 

and the number of trees. The complete set of hyperparameters is presented in Table 3. 

Table 3. Values of the parameters used in the estimation of gradient boosting 

 

Note: default values of hyperparameters are written in italics. 

Hyperparameters Values 

loss function deviance, exponential 

learning rate 0.1, 0.05 

number of estimators 75, 100, 150 

minimum number of observations in a leaf 1, 3 

maximum depth 2, 3, 4 

maximum number of features None, log2 

subsample 1.0, 0.9 
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2.4. Neural network 

Here we consider a feed-forward neural network with three hidden layers. To avoid 

overfitting, at each hidden layer we use the dropout procedure where the neuron stays in the 

network with a fixed probability. We define the initial weights by Xavier initialization.10 

A three layer neural network can be represented by equations (8)-(11): 
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i i

i

h f b w x
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3 ,y yy g b w h   (11) 

where 1,..., Nx x  are input data with N  features, jw  are weights of the hidden layers 1,...,3j   

with 1 2 3, ,N N N  being the number of neurons on the first, second and third layers and yw  is 

the vector of size 3 1N   of weights on the output layer, jb  and yb  are biases, ( )f   and ( )g   

are the activation functions (ReLU and tanh, correspondingly), jh  is the output of the hidden 

layer j , 
'y  is the output of the neural network.11 

In both tasks, whether it is the forecasting of license withdrawal or the prediction of 

requirements violation, the data are highly unbalanced. As the result, during the model 

training aggregate errors of the classification of the minor class are less significant compared 

to the aggregate errors of the major class classification. Therefore, the trained network would 

most likely attribute observations to the major class during the forecasting. There exist three 

common methods to deal with unbalanced datasets (see, e.g., He, Garcia (2008); 

Ganganwar, (2012); Sonak, Patankar (2015)). The first method consists of the exclusion the 

observations of the major class from the training set until the dataset becomes balanced. The 

second method is based on the inclusion of duplicates of minor class observations until the 

dataset becomes balanced. The third method prescribes an increase in the weights of errors 

of the minor class in the loss function. The choice of a particular method depends highly on 

the task. In our case the first method cannot be applied because the exclusion of major class 

                                                        
10 For greater detail see, e.g., Glorot, Bengio (2010). 
11 Estimations are conducted with the use of TensorFlow framework (Abadi et al. (2016)) with Adam algorithm 
(Kingma, Ba (2014)) as a method for the cost-function optimization. 
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observations would lead to the exclusion of most of the observations from the training set, 

and the remaining data would not be sufficient to train the classifier. The application of the 

second method would lead to a more complicated cross-validation procedure and possible 

errors in it. Therefore, here we apply the third method: we use the custom loss function, with 

a higher weight of the minor class. It is represented by equation (12): 

 max 0;0.01 ( ') ,
N

i

i

L y y  where 

*1, 0

1

weight if y
y

 
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( 1)
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N y
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N y

 



, 

(12) 

and 'y is the estimate of an attribute to the particular class.12 Initially y  takes values of 1 or 

-1 depending on whether the bank license was withdrawn (or the requirement was violated) 

in this month or not. 

We chose the optimal hyperparameters of the neural network via cross-validation. The 

considered hyperparameters are summarized in Table 4. 

Table 4. Values of the parameters used in the estimation of the neural network 

Hyperparameters Values 

type of regularization L1, L2 

size of regularization 0, 0.1 
learning rate13 0.001 
number of neurons at 1st, 2rd and 3rd layer 100, 400 
drop-out at 1st and 3rd layer 0.25 
drop-out at 2rd layer 0.25, 0.75 
batch size14 200, 3000 
epochs 10, 40 

2.5. Model stacking 

The stacking of models is widely used in machine learning in order to increase the 

accuracy and the stability of estimation. Stacking is a method of combining two or more 

different models to form the final result. This final model often has a higher forecasting 

performance compared to the individual models included in the stacking. 

In the binary classification there exist different methods to form a model ensemble.15 

Here we apply stacking on the basis of a logistic-model. As features in the model we use the 

                                                        
12 The window size of 0.01 was chosen empirically during preliminary estimates. In this case the classification 
with a right size by small in absolute value is penalized less. 
13 Learning rate is linearly decreasing to 1e-7 depending on the epoch. 
14Batch size sets the number of observations used at each step of the gradient boosting during training. 
15 Clarke, Clarke (2018). Ensemble Methods, Predictive Statistics: Analysis and Inference beyond Models. 
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class predictions obtained in the first step from the models described above: random forest, 

gradient boosting and logit-model (“first level” models). In the second step, in order to train 

the stacking model and test its forecasting performance, we need two sets of data: training 

and test datasets. They are based on the data from the first step. In the second step, we 

obtain the training set in the following way. First, we choose the optimal hyperparameters for 

each “first level” model via cross-validation on the training set of the initial data. Next, this 

dataset is split into six equal subsets, where for each observation we form a prediction 

concerning the affiliation to a particular class on the basis of “first level” models trained at the 

remaining five datasets. After applying this procedure to each subset we obtain the 

predictions for each observation from the training set. The estimates on the control set are 

obtained from the training of “first level” models. They form the final estimate on the “first 

level” control set. 

The choice of the optimal hyperparameters of the stacking model (based on the logit-

model) is conducted via cross-validation on the training set of the “second level”. Chosen 

hyperparameters are used in logit-model estimated on the whole “second level” training set. 

Next the final forecast is built on the control set. Hyperparameter values considered during 

cross-validation are presented in Table 5.16 

Table 5. Values of the parameters used in the estimation of stacking via logistic 
regression 

Note: default values of hyperparameters are written in italics. 

3. Data and model estimation 

3.1. Initial data and sample splitting 

The models are estimated based on the bank accounting data published by the Bank 

of Russia. We use 35 series from 101, 102, 135 forms from February 2014 to October 2018 

(Appendix, Table A1). Since the 102 form has quarterly frequency its figures are transformed 

into the monthly data. We split it into training and test sets: the data before June 2017 are 

included in the training set, while the remaining data are used to evaluate the forecasting 

                                                        
16 Initial set of regularization values was adjusted after the preliminary estimates. Values differ from those in 
Table 1 due to the smaller number of features included in the model: 6 instead of 69 or 721, correspondingly. 

Hyperparameters Values 

solver newton-cg, lbfgs, liblinear, sag, saga 

inverse of regularization strength 1.5, 1.0, 0.5, 0.1, 0.05, 0.005 

maximum number of iterations 50, 75, 100, 125, 150, 200 
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performance of the models. As a part of data pre-processing we exclude the evident outliers 

and we cut the 99th percentile. We also exclude observations with the omitted values on a 

particular date, which do not allow us to build models with the considered number of lags or 

with the constructed variables from banking data. 

On the basis of the initial 35 series we form two datasets, of 69 and 721 variables 

correspondingly, to construct predictions for 1, 2, 3 months, half a year and 9 months in 

advance. The first dataset additionally includes 34 variables formed on the basis of the initial 

data (Appendix, Table A2). The second dataset is obtained from the first one in the following 

way. For each variable we add its previous values and the differences with previous values 

with lags of 1, 2, 3 and 6 months.17 Additionally, we add moving averages for 1, 2, 3 and 6 

months and their pairwise differences for the considered bank ratios. As the result, the 

second dataset consists of 721 variables. We construct models for bank license withdrawal 

and the following statutory requirements: capital adequacy ratio, common equity Tier 1 ratio, 

Tier 1 capital ratio, instant and current liquidity ratios. The number of observations, left after 

pre-processing, in the training and test set for each target variable and each forecasting 

horizon is presented in Table A9 in the Appendix. 

3.2. Performance metrics 

There exist different metrics to evaluate the model performance in the binary 

classification problem. The choice of a particular metrics depends on the task at hand and 

on the data used. In the case of balanced data, when the number of observations of both 

classes is comparable, the use of a simple accuracy measure, calculated as a ratio of 

correctly classified observations to the total number of observations, is acceptable. However, 

in the prediction of bank license withdrawal and bank requirements violation the data are 

highly unbalanced. Both the number of license withdrawals and the cases of requirements 

violation is small comparing to the total number of observations. In this case the high value 

of the accuracy measure does not indicate the good forecasting performance of the model 

because this measure is based on the total number of correctly classified observations, 

without any separation by class. The accuracy measure would have a high value even if the 

model correctly classified most of the observations of the major class and was mistaken in 

all minor class observations. This measure is not applicable to the tasks we consider here as 

                                                        
17 Mäkinen, Solanko (2017) show that the differences of CAMEL variables as opposed to their absolute values 
have the higher impact on the probability of default. 
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it does not allow us to correctly evaluate the forecasting performance of the model. That is 

why here we apply a set of different metrics to compare models by their performance. 

Let us consider in greater detail the binary classification problem: the prediction of an 

observation class based on the estimation of its affiliation to a particular class. If this estimate 

exceeds a threshold level (cut-off threshold), the observation is referred to the one class, if 

the estimate is below the threshold – to the other class. The adjustment of the threshold level 

can lead to an increase or a decrease in the frequency of a particular class. In the case of 

binary classification (“positive” or “negative”) the observation can belong to either of the 

following types depending on the probability of the model prediction: 

 TP (true positive) – if the observation is correctly classified as “positive”. 

 FP (false positive) – if the observation is incorrectly classified as “positive”. 

 TN (true negative) – if the observation is correctly classified as “negative”. 

 FN (false negative) – if the observation is incorrectly classified as “negative”. 

Based on the number of observations in each of these classification types one can 

calculate the following measures: 

1. Sensitivity: 

TP
TPR

TP FN



; 

2. Specificity: 

TN
TNR

TN FP



; 

3. F1-score: 

2
1

2

TP
F

TP FP FN


 
. 

The other metric widely used along with these measures is a ROC-AUC score. It is 

defined as an area underneath the ROC curve, built in (TPR, 1-TNR) axes with the threshold 

changing from 0 to 1. Therefore, a ROC-AUC score provides a general characteristic of the 

classifier, which does not depend on the threshold level. 

https://en.wikipedia.org/wiki/Specificity_(tests)
https://en.wikipedia.org/wiki/Specificity_(tests)
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Sensitivity and specificity, as opposed to the accuracy measure, allow us to evaluate 

how well the classifier identifies the items of each class (correctly classified “positive” or 

“negative”). These two measures are related by the construction: in case of an imperfect 

classifier the model tuning aimed at the improvement of one metric will generally lead to the 

decrease in the other. 

As opposed to sensitivity and specificity, the F1-score takes into account the information 

concerning the predictions of both classes. This allows us to evaluate the quality of the 

classification model with the use of one measure. That is why we apply the F1-score as a 

more appropriate quality metric for our tasks. In the case of bank license withdrawal or bank 

requirements violation we treat both errors as equivalent. So we use the F1-score which 

includes classification errors of both classes with equal weights. In the other tasks, where 

classification errors of one class are more important than the others, it is possible to use the 

F1-score with the different weights. 

3.3.  Cross-validation 

Tuning of hyperparameters is an important stage in the training of a machine learning 

model. Due to the limited number of observations, here we use a cross-validation procedure 

to choose the optimal hyperparameters. The training dataset is split into three subsets, and 

each is used as a test set. The rest of the data is used in the training of the model with the 

given set of hyperparameters. After the training we select the threshold level from the 

maximization of F1-score on each test subset. For each of the subsets we calculate the actual 

F1-score for an average of the threshold levels obtained at each subset. The final F1-score 

is an average value of actual F1-scores on each subset. Afterwards we choose the set of 

hyperparameters with the highest F1-score. For the forecasting we use the model with the 

chosen set of hyperparameters and the threshold level. On its basis we build the forecast for 

the rest of the data. 

In cross-validation splitting, which takes into account the data used, is crucial. The use 

of random splitting in the prediction problem can lead to ambiguous results. In the case of 

long-term forecasting the training and test sets can include “close” observations for a 

particular bank which can affect the performance metrics of the model. For example, in the 

forecasting of a bank license withdrawal in the next 6 months for the bank whose license was 

truly withdrawn in the data we would have 6 observations with the same value of the target 

variable (“license withdrawn”). At the same time, their explanatory variables can have close 

values. During the splitting of these data into training and test datasets there can be an 
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information leak about the observation class label from training to test dataset. It can lead to 

overestimation of the score on the test set and interfere with the choice of the optimal 

hyperparameters of the model. 

In order to avoid this leak during cross-validation, we relocate all observations for each 

bank to one of the three subsamples (later on, “controlled cross-validation”). The number of 

observations of bank with a withdrawn license is equally allocated to all three subsamples. 

Unallocated observations of banks who kept their license are dispersed among the subsets 

so to maintain the equality of the final subsample sizes. 

4. Results 

This section summarizes the results of the model estimation. First, we consider the 

forecasting of bank license withdrawal, comparing the performance of different machine 

learning algorithms (Section 3.1). We show how the model priority based on the forecast 

accuracy depends on the chosen performance metrics and how it can change when moving 

from cross-validation to the test set. Section 3.2 provides the results on the forecasting of 

violation of two requirements (Tier 1 capital adequacy ratio and current liquidity) as the most 

representative ones for the results on the capital and liquidity requirements. The results of 

the prediction of the violation of the other requirements are provided in Appendix. In Section 

3.3 we check the robustness of the results, first, by considering an alternative type of data 

splitting on cross-validation (Subsection 3.3.1) and, second, by considering the larger data 

sample of explanatory variables (Subsection 3.3.2). We show that in the former case the 

results do change with the different, more favourable type of data split, resulting in higher 

levels of performance metrics due to the information leak from train to test subset during 

cross-validation. In the latter case, on the contrary, the larger data sample does not affect 

the results in one particular direction. The results vary depending on the forecasting horizon 

and the type of the considered model. 

4.1. Forecasting license withdrawal 

First, let us consider the performance of machine learning models in the task of 

forecasting bank license withdrawal. Figure 1 presents the results of the model estimation: 

F1-score and ROC-AUC on the cross-validation and test set. The results are provided for the 

estimation on the dataset of 69 variables. The optimal set of parameters chosen when using 

cross-validation for each forecasting horizon is proved in the Appendix (Table A3). 
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Figure 1. F1-score and ROC-AUC in the forecasting of bank license withdrawal 
on the cross-validation set (on the left) and on the test set (on the right) 

Let us consider first the performance of models on the cross-validation set. Gradient 

boosting, random forest and stacking have the best accuracy on all forecasting horizons 

compared to the logit-model and neural networks. The forecast based on stacking is the most 

accurate according to both measures (ROC-AUC and F1-score).18 

The comparison with the estimation results on the test set shows that ROC-AUC 

measure and F1-score change in a different way, advocating for different models. ROC-AUC 

measures of gradient boosting, random forest and stacking slightly decrease on the test set 

but remain close to their values on cross-validation set. The F1-score, on the contrary, falls 

significantly on the test set compared to its values on cross-validation. The gap between the 

F1-score on the cross-validation set and the test set with almost unchanged values of ROC-

AUC measures can be a sign of a significant difference in the data in these datasets, as the 

                                                        
18 For the three months in advance the prediction based on the stacking model the cross-validation set has the 
comparable accuracy with the gradient boosting model. 
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test set includes data from June 2017. It can probably be explained by the active policy of 

the Bank of Russia’s active policy during 2014-2016 aimed at the reorganization of the 

banking sector. That is why the test set may include banks, whose license may be withdrawn 

due to the other reasons compared to those included in the data during cross-validation. 

To identify whether the difference in F1-scores of the considered models is significant 

on the test set we apply the bootstrapping technique, generating 1000 subsamples drawn 

from the test set. The obtained distribution, cut at the 5th and 95th percentiles, is presented in 

Figure 1. We can see that there is a significant difference only with the neural network models 

for the horizons of one and three months. In the other cases the difference in the performance 

is not significant, suggesting that machine learning models can indeed compete with logit-

model in the forecasting of license withdrawal. 

Despite the structural changes occurring during the considered time period the models 

presented here allow us to obtain more accurate forecasts than those previously obtained in 

the literature (on the basis of the ROC-AUC measure). The forecasting results presented, for 

instance, are more accurate than those of Emelyanov, Briukhova (2015), for the comparable 

forecasting horizons (on the basis of the area under ROC-curve). However, Emelyanov, 

Briukhova (2015) focus only on the cases of license withdrawal linked to financial stability of 

the bank, considering 30 banks in the train and 10 banks in the test set. Thus the comparison 

with their results is not entirely correct due to the different time period and the limited sample 

of banks considered. It is possible that this difference in the forecast accuracy would be even 

bigger if the machine learning approach would be applied to the data on preselected banks, 

limiting the scope of the analysis to the financial reasons of license withdrawal only. 

4.2. Forecasting of the requirements violation 

Within the task of forecasting bank requirements violation we have considered three 

capital requirements (capital adequacy ratio, common equity Tier 1 adequacy ratio, Tier 1 

capital adequacy ratio) and two liquidity requirements (instant and current liquidity). Due to 

the similarity of the estimation results for all three capital ratios and two liquidity requirements 

we provide here only the results for Tier 1 capital ratio and the current liquidity ratio. The 

results for the other requirements are provided in the Appendix (Figures A2-A6). Figure 2 

summarizes the results for the violation of Tier 1 capital ratio. The optimal set of parameters 

chosen on cross-validation for each requirement violation and each forecasting horizon is 

provided in the Appendix (Table A4-A8). 
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Figure 2. F1-score and ROC-AUC in the forecasting of Tier 1 capital ratio 
on the cross-validation set (on the left) and on the test set (on the right) 

In the case of requirements violation as opposed to license withdrawal the preferable 

models on the cross-validation set differ depending on the considered performance metric. 

Random forest models on the cross-validation set have the highest level of the F1-score at 

all forecasting horizons. At the same time the stacking models have the highest level of ROC-

AUC, outperforming random forest and gradient boosting. As opposed to the license 

withdrawal task, the logit-model has a lower forecasting performance according to both 

performance metrics, compared to the random forest and gradient boosting. As in the case 

of license withdrawal, neural networks continue to have the lowest scores. 

According to both metrics on the test set for most of the horizons the priority of models 

by their accuracy remains consistent. This underlines the need to choose the target 

performance metric as early as at the cross-validation stage. Despite the higher ROC-AUC 

levels of gradient boosting models they have the lower values of F1-score compared to 

random forest on both cross-validation and the test sets. Moreover, the difference in the F1-
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score between models on the test set is significant for all forecasting horizons except the 

horizon of 6 months. The F1-score is the most appropriate metric to evaluate the forecasting 

performance of the presented models as it equally accounts for both binary classification 

errors for a given threshold level. At the same time, ROC-AUC is a general classification 

metric which does not depend on the threshold level. Its higher level for one algorithm does 

not imply the existence of the threshold level for which the F1-score will also be higher than 

for the other algorithm. 

Now let us move to the case of current liquidity. Figure 3 shows the results for 

performance metrics for the forecasting of the violation of current liquidity on the basis of 69 

variables. The results for instant liquidity are similar and are presented in Appendix (Figure 

A6). 

 

Figure 3. F1-score and ROC-AUC in the forecasting the violation of current 
liquidity ratio 

on the cross-validation set (on the left) and on the test set (on the right) 
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Overall, the priority of the models remains consistent when moving from cross-

validation to the test set with stacking, gradient boosting or random forest, depending on the 

forecasting horizon, outperforming the logit-model. Specifically, on the cross-validation set 

random forest and stacking models have the highest F1-scores compared to the other 

models for most forecasting horizons except the period of 2 months, where gradient boosting 

has the higher score. Neural networks have the lowest F1-score for all forecasting horizons 

except the period of 6 months, where gradient boosting has the worst performance. Neural 

networks and gradient boosting models have one of the lowest ROC-AUC levels at 6 and 9 

months horizons, while stacking has the highest ROC-AUC value. On the test set the stacking 

(for 2, 3 and 9 months) and random forest models (for 1 and 6 months) have the highest 

ROC-AUC levels. In most cases the ROC-AUC values for stacking and random forest models 

are rather close. For most horizons random forest models have the highest levels of F1-score 

(except the 6 months horizon). However, the estimated confidence bands do not suggest that 

the difference between models at short horizons is the significant one (Figure 3). 

On the cross-validation and test sets the forecasting accuracy of the models built for 

the forecasting of the violation of liquidity requirements is lower than the one of the models 

aimed at forecasting the violation of capital requirements (capital adequacy ratio, common 

equity Tier 1 ratio, Tier 1 capital ratio). It can be explained by the high volatility of the liquidity 

ratios, where the previous dynamics of ratios and explanatory variables has little information 

for the forecasting of their future dynamics. 

4.3. Robustness of the results 

4.3.1. The types of data splitting to subsamples 

Figure 2 clearly illustrates the gap between the levels of performance metrics on cross-

validation and test sets. Values on the test set are higher for all horizons and all models 

except the neural networks. This gap may be due to the chosen cross-validation methodology 

(controlled splitting), which underestimates the metric values on cross-validation. In order to 

verify this hypothesis we consider another type of data splitting, random splitting: splitting 

where the observations of each bank are allocated randomly across subsamples. The 

number of observations of both classes in the subsamples is kept equal as far as possible. 

Let us compare the levels of performance metrics for random forest and logit-model, 

estimated for two different types of data splitting during cross-validation. It is clear from Figure 

4 that the type of splitting does indeed significantly affect the size of the gap between metrics 
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levels on cross-validation and test sets. As expected, the metrics level under random splitting 

is generally higher compared to the controlled splitting. The reason for the higher metric 

levels on the cross-validation set is twofold. The first effect appears because in the case of 

controlled splitting in the training set there are no observations of the banks which were 

included in the test set. Thus, the models are trained on the data on another banks. It is a 

positive consequence of this type of splitting as in this case the classifier draws patterns for 

the banks with the common features. However, despite the close values of the explanatory 

variables, the level of ratios may vary, and thus, the violation of the requirements may occur 

or not depending on the bank under consideration. This may bring about an error in the 

forecasting of requirements violation. At the same time, in the case of random splitting, the 

models get more information on the bank included in the test set, as the observations on a 

particular bank are likely to be included in the training set. This effect makes the cross-

validation with random splitting close to real forecasting. 

 

Figure 4. Comparison of performance metrics under two types of cross-validation 

(forecasting of the violation of Tier 1 capital adequacy ratio) 
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The second effect consists in the plausible inclusion of the similar observations for a 

particular bank in both the training and test subsets on cross-validation. If we take, for 

example, the forecasting of the June violation of the requirement for three months in advance 

we would have three observations with the “violation” label (for March, April and May). The 

values of bank accounting data for three consecutive months can be close to each other, so 

when the data are split in the training and test sets on cross-validation there will be an 

information leak about the observation class. In this case, there will be an overestimation of 

the metric levels on cross-validation compared to the real levels. 

This effect is well illustrated by the measure levels for the random forest. Instead of the 

expected fall in the measure values with the extension of the forecasting period we, in 

contrast, notice a sizeable increase in the F1-score starting from the three-month horizon. 

For ROC-AUC this effect appears from the 2-month horizon. At the same time, there is no 

evidence of this effect for the logit-model. This can be explained by the complexity of the 

random forest algorithm compared to the logit-model. Being a nonlinear algorithm, random 

forest can be trained to better capture complex relationships. That is why it can better capture 

the mentioned information leak from the training to the test subset on cross-validation. This 

can be implicitly confirmed by the fact that under random splitting the optimal model 

architecture is more complex than the one under controlled splitting. 

The difference in the levels of performance metrics is clear from their comparison on 

cross-validation: under controlled splitting the levels are lower than under random splitting. 

The same is true for the logit-models on the test set. For this class of models, therefore, it is 

preferable to apply random splitting on cross-validation. For random forest models the 

preferable type of data splitting on cross-validation is less obvious. Under random splitting 

we obtain more complex random forest models and, thus, probably less stable. Therefore, 

we can assume that in the case of random forest it is better to apply controlled data splitting 

on cross-validation. 

4.3.2. Number of variables and the forecast accuracy 

In this subsection we provide an estimation of the models described above on two 

datasets of different size: the first dataset consists of 69 variables, the second one – of 721 

variables and is based on the first dataset. We construct the second dataset to verify whether 

we can improve the forecasting performance by training models on a more detailed dataset, 

which includes additional information on the previous values of the variables. Figure 5 shows 
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the performance metrics of the logit and random forest models for forecasting the violation 

of the Tier 1 capital adequacy ratio. 

 

Figure 5. Comparison of performance metrics in the forecasting of Tier 1 
capital ratio violation depending on the number of explanatory variables 

on cross-validation set (on the left) and on the test set (on the right) 

We can see that on cross-validation set random forest models estimated on the bigger 

data sample have higher F1-scores compared to the models based on the smaller sample. 

Their ROC-AUC measures are also higher for the horizons of 1, 2 and 9 months, although 

the difference in measures is not significant. Logit-models estimated on 721 variables have 

higher F1-scores for 1, 2 and 9 months and ROC-AUC measures at all horizons, except 3 

months. 

On the test set according to both metrics the model priority remains unchanged for logit-

models for 1 and 2 months and for random forest at the horizon of 9 months. Confidence 

bands for the F1-score suggest that the difference between the performance of models built 

on a large and small dataset is not significant. As for license withdrawal (Appendix, A7) and 
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the violation of the other requirements the difference in forecasting performance (F1-score) 

of the models estimated on 69 and 721 is also insignificant in most of the cases.19 The 

obtained results suggest that the use of additional data constructed from the initial data 

sample does not allow us to significantly improve the forecasting performance of the 

considered machine learning models. 

Conclusion 

We apply machine learning techniques to choose the optimal model architectures for 

the forecasting of bank license withdrawal and bank requirements violations (capital 

adequacy ratio, common equity Tier 1 adequacy ratio, Tier 1 capital adequacy ratio, instant 

and current liquidity requirements). We estimate random forest, gradient boosting and neural 

network models along with stacking and compare the results with the logit-model forecasts 

for the horizons of one, two, three months, half of year and 9 months. We consider two 

datasets, containing 69 and 721 variables, based on 35 monthly indicators from Russian 

banks’ accounting from February 2014 to October 2018. We compare the results depending 

on the performance metric used (F1-score or ROC-AUC), showing the importance of the 

choice of the correct performance metric for the task under consideration. 

We show that the logit-model, widely used in the related literature, may not be the model 

with the highest forecasting accuracy. In the case of license withdrawal prediction all 

considered models with the optimal architecture have a comparable forecasting performance 

on the test set. However, on cross-validation set the gradient boosting and random forest 

models have considerably higher F1-scores compared to the logit-models. The performance 

metrics of these models on cross-validation set are also higher than those on the test set. 

This can be explained by the structural change in the data on cross-validation set and in the 

test set and shows the potential of such machine learning models as gradient boosting and 

random forest to provide more accurate forecasts of license withdrawals than the commonly 

used methods. 

In the case of forecasting requirements violation the gradient boosting and random 

forest models can also compete with the logit-model in terms of forecast accuracy. In 

particular, random forest models have higher accuracy for most horizons in the forecasting 

of capital adequacy ratios violation. In the case of the violation of liquidity ratios the levels of 

                                                        
19 Figures for the requirements violations are omitted for the sake of brevity and can be provided upon the 

request. 
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performance metrics of different models are comparable and lower than those in the 

forecasting of capital ratios. This may be explained by the higher volatility of liquidity ratios 

compared to the capital ones, which complicate the short-term forecasting of these 

requirements. 

Particular attention is paid to the methodology of data splitting when using cross-

validation and its effect on the forecasting performance of the models. In the example of 

forecasting the violation of Tier 1 capital ratio with the random forest and logit-model, we 

show that the levels of performance metrics may significantly depend on the type of data 

splitting. This result underlines the need to choose the appropriate type of data splitting, 

taking into account the forecasting target and the characteristics of the data. We also check 

the robustness of the results on the dataset of 721 variables formed from previously used 69 

variables, showing that this data extension does not allow us to qualitatively increase the 

forecasting performance of the considered models. 
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Appendix 

Tables 

Table A1. Variables based on the bank accounting 

Variable Notation 

Form 101 

Balance assets 2071 

Form 102 

Total income 10000 
Interest income 11000 
Total expenses 20100 
Total in section “Interest paid” 21000 
After-tax profit  31001 

Losses after tax 31002 

Form 135 

Assets with zero risk coefficient arisk0 
Highly liquid assets lam 
Total of large credit risks kskr 
Liquid assets lat 

Bank liabilities on loans and deposits and active bank bonds with maturity date over a year od 

Demand liabilities ovm 
Demand liabilities and for a term of up to 30 days ovt 
Internal funds (capital) kap0 
Common Equity Tier 1 kap1 
Capital assets kap2 

Loans issued by a bank, deposits including those in precious metals with the remaining 
maturity exceeding a year 

krd 

Risk-weighted assets (capital adequacy ratio) ar.0 

Assets included in the first group not weighted by the risk (capital adequacy ratio) ar1.0 
Assets included in the second group (capital adequacy ratio) ar2.0 

Assets included in the fourth group (capital adequacy ratio) ar4.0 

Risk-weighted assets (common equity Tier 1 ratio) ar.1 

Assets included in the first group not weighted by the risk (common equity Tier 1 ratio) ar1.1 

Assets included in the second group (common equity Tier 1 ratio) ar2.1 
Assets included in the fourth group (common equity Tier 1 ratio) ar4.1 
Risk-weighted assets (Tier 1 capital ratio) ar.2 

Assets included in the first group not weighted by the risk (Tier 1 capital ratio) ar1.2 

Assets included in the second group (Tier 1 capital ratio) ar2.2 
Assets included in the fourth group (Tier 1 capital ratio) ar4.2 
Capital adequacy ratio n1.0 
Common equity Tier 1 adequacy ratio n1.1 
Tier 1 capital adequacy ratio n1.2 
Instant liquidity ratio n2 
Current liquidity ratio n3 
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Table A2. Variables formed on the bank accounting 

Internal notation Formula 

log(2071) log(2071) 

lat_A lat/2071*100 

31001_A 31001/2071*100 

31002_A 31002/2071*100 

log(31001) log(31001) 

kskr_A kskr/2071*100 

krd_A krd/2071*100 

ovm_A ovm/2071*100 

od_A od/2071*100 

ovt_A ovt/2071*100 

31001/ovt 31001/ovt*100 

31001/krd 31001/krd*100 

10000_A 10000/2071*100 

20100_A 20100/2071*100 

11000_A 11000/2071*100 

21000_A 21000/2071*100 

31001/kap0 31001/kap0*100 

kap0_A kap0/2071*100 

log(kap0) log(kap0) 

(11000+21000)_A (11000 + 21000)/2071*100 

log(arisk0) log(arisk0) 

arisk0_A arisk0/2071*100 

lam_A lam/2071*100 

log(lat) log(lat) 

log(lam) log(lam) 

kap0/ar.0 kap0/ar.0*100 

kap1/ar.1 kap1/ar.1*100 

kap2/ar.2 kap2/ar.2*100 

sum_ar_0 ar1.0 + ar2.0 + ar4.0 

sum_ar_1 ar1.1 + ar2.1 + ar4.1 

sum_ar_2 ar1.2 + ar2.2 + ar4.2 

kap0/sum_ar_0 kap0/sum_ar_0*100 

kap1/sum_ar_1 kap1/sum_ar_1*100 

kap2/sum_ar_2 kap2/sum_ar_2*100 
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Table A3. Hyperparameters chosen on cross-validation for each 
forecasting period 

(license withdrawal) 

  logistic regression 

  1 month 2 months 3 months 6 months 9 months 

C 0.1 0.1 0.05 1.5 0.5 

solver saga saga liblinear newton-cg liblinear 

  random forest 

n_estimators 500 800 800 500 800 

max_depth 10 10 5 10 10 

min_samples_split 2 2 6 2 6 

min_samples_leaf 6 6 1 6 2 

max_features log2 log2 auto auto auto 

  gradient boosting 

n_estimators 100 100 100 150 100 

learning_rate 0.05 0.05 0.1 0.1 0.1 

loss deviance exponential deviance deviance exponential 

subsample 1 1 1 1 1 

min_samples_leaf 1 1 1 1 1 

max_depth 2 3 2 2 3 

max_features log2 log2 log2 log2 log2 

  neural network 

epochs 10 10 40 40 40 

batch_size 200 200 200 3000 200 

learning_rate 0.001 0.001 0.001 0.001 0.001 

drop_out_1 0.25 0.25 0.25 0.25 0.25 

drop_out_2 0.75 0.75 0.75 0.25 0.25 

drop_out_3 0.25 0.25 0.25 0.25 0.25 

n_count_1 400 400 400 400 400 

n_count_2 400 400 400 400 400 

n_count_3 100 100 400 400 100 

reg l1 l2 l2 l2 l1 

scale 0.1 0 0 0 0 

  stacking 

C 0.05 0.1 0.005 0.005 0.005 

solver liblinear saga liblinear saga newton-cg 
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Table A4. Hyperparameters chosen on cross-validation for each 
forecasting period 

(forecasting of violation of capital adequacy ratio) 

  logistic regression 

  1 month 2 months 3 months 6 months 9 months 

C 1.5 0.5 1.5 1.5 1 

solver lbfgs sag lbfgs lbfgs saga 

  random forest 

n_estimators 800 500 100 100 500 

max_depth None 25 5 None None 

min_samples_split 6 2 6 6 2 

min_samples_leaf 6 6 6 6 1 

max_features log2 auto log2 log2 auto 

  gradient boosting 

n_estimators 75 150 150 100 100 

learning_rate 0.1 0.05 0.05 0.05 0.05 

loss exponential exponential exponential exponential exponential 

subsample 1.0 0.9 1.0 1.0 1.0 

min_samples_leaf 1 1 1 1 3 

max_depth 3 2 3 2 2 

max_features log2 log2 log2 None None 

  neural network 

epochs 40 40 40 40 10 

batch_size 3000 3000 3000 3000 3000 

learning_rate 0.001 0.001 0.001 0.001 0.001 

drop_out_1 0.25 0.25 0.25 0.25 0.25 

drop_out_2 0.25 0.25 0.25 0.25 0.75 

drop_out_3 0.25 0.25 0.25 0.25 0.25 

n_count_1 400 400 400 400 400 

n_count_2 100 100 400 400 400 

n_count_3 400 100 400 400 100 

reg l1 l1 l2 l1 l1 

scale 0 0 0.1 0 0 

  stacking 

C 0.1 0.1 0.05 0.5 1 

solver saga liblinear liblinear newton-cg sag 

  



THE FINER POINTS OF MODEL COMPARISON IN MACHINE LEARNING:  
FORECASTING BASED ON RUSSIAN BANKS’ DATA AUGUST 2019 39 

 

39 

 

Table A5. Hyperparameters chosen on cross-validation for each 
forecasting period 

(forecasting of violation of common equity Tier 1 ratio) 

  logistic regression 

  1 month 2 months 3 months 6 months 9 months 

C 1.5 1.5 1.5 1.5 1.5 

solver lbfgs sag lbfgs lbfgs newton-cg 

  random forest 

n_estimators 100 100 100 500 500 

max_depth 5 10 10 5 5 

min_samples_split 6 6 6 6 2 

min_samples_leaf 2 1 6 1 1 

max_features log2 log2 auto log2 log2 

  gradient boosting 

n_estimators 150 150 100 150 150 

learning_rate 0.05 0.05 0.1 0.05 0.1 

loss exponential exponential exponential exponential exponential 

subsample 1 0.9 1 1 1 

min_samples_leaf 1 3 1 1 3 

max_depth 2 2 2 2 2 

max_features log2 log2 log2 log2 log2 

  neural network 

epochs 40 40 40 40 40 

batch_size 3000 3000 3000 3000 3000 

learning_rate 0.001 0.001 0.001 0.001 0.001 

drop_out_1 0.25 0.25 0.25 0.25 0.25 

drop_out_2 0.25 0.25 0.25 0.25 0.25 

drop_out_3 0.25 0.25 0.25 0.25 0.25 

n_count_1 400 400 400 400 400 

n_count_2 100 100 100 100 400 

n_count_3 100 100 400 400 100 

reg l2 l2 l2 l2 l2 

scale 0.1 0.1 0.1 0.1 0.1 

  stacking 

C 0.5 0.05 0.5 0.5 0.5 

solver sag liblinear newton-cg newton-cg newton-cg 
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Table A6. Hyperparameters chosen on cross-validation for each 
forecasting period 

(forecasting of violation of Tier 1 capital ratio) 

  logistic regression 

  1 month 2 months 3 months 6 months 9 months 

C 1.5 1.5 1.5 0.5 0.1 

solver saga sag lbfgs newton-cg liblinear 

  random forest 

n_estimators 800 100 500 100 100 

max_depth 10 10 10 5 5 

min_samples_split 2 2 2 2 6 

min_samples_leaf 6 2 1 6 6 

max_features auto log2 log2 auto auto 

  gradient boosting 

n_estimators 75 75 100 150 100 

learning_rate 0.1 0.05 0.05 0.1 0.05 

loss exponential exponential exponential exponential exponential 

subsample 1 0.9 1 1 0.9 

min_samples_leaf 1 1 1 1 1 

max_depth 2 3 2 2 2 

max_features log2 None None log2 log2 

  neural network 

epochs 40 40 40 40 10 

batch_size 3000 3000 3000 3000 3000 

learning_rate 0.001 0.001 0.001 0.001 0.001 

drop_out_1 0.25 0.25 0.25 0.25 0.25 

drop_out_2 0.25 0.25 0.25 0.25 0.25 

drop_out_3 0.25 0.25 0.25 0.25 0.25 

n_count_1 400 400 400 400 400 

n_count_2 100 100 100 100 100 

n_count_3 400 400 400 400 100 

reg l1 l2 l1 l2 l1 

scale 0.1 0.1 0.1 0 0.1 

  stacking 

C 1 0.1 0.1 0.05 0.005 

solver newton-cg lbfgs liblinear liblinear sag 
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Table A7. Hyperparameters chosen on cross-validation for each 
forecasting period 

(forecasting of violation of instant liquidity ratio) 

  logistic regression 

  1 month 2 months 3 months 6 months 9 months 

C 1.5 1 1.5 1.5 0.05 

solver sag sag sag lbfgs lbfgs 

  random forest 

n_estimators 500 100 100 100 100 

max_depth 10 None None 10 10 

min_samples_split 2 2 6 6 6 

min_samples_leaf 2 1 2 2 6 

max_features auto auto log2 auto log2 

  gradient boosting 

n_estimators 150 100 150 150 75 

learning_rate 0.05 0.05 0.1 0.1 0.1 

loss exponential exponential exponential deviance exponential 

subsample 1 0.9 1 1 1 

min_samples_leaf 1 1 1 1 1 

max_depth 3 2 2 2 2 

max_features log2 None log2 log2 None 

  neural network 

epochs 10 40 40 40 40 

batch_size 3000 3000 3000 3000 3000 

learning_rate 0.001 0.001 0.001 0.001 0.001 

drop_out_1 0.25 0.25 0.25 0.25 0.25 

drop_out_2 0.75 0.25 0.25 0.25 0.75 

drop_out_3 0.25 0.25 0.25 0.25 0.25 

n_count_1 400 400 400 400 400 

n_count_2 400 400 400 400 400 

n_count_3 400 400 100 400 400 

reg l1 l2 l2 l1 l1 

scale 0.1 0.1 0.1 0 0.1 

  stacking 

C 1 1 0.5 0.5 0.5 

solver liblinear newton-cg liblinear liblinear sag 
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Table A8. Hyperparameters chosen on cross-validation for each 
forecasting period 

(forecasting of violation of current liquidity ratio) 

  logistic regression 

  1 month 2 months 3 months 6 months 9 months 

C 1.5 1.5 1.5 1.5 1.5 

solver saga newton-cg lbfgs lbfgs saga 

  random forest 

n_estimators 800 100 100 100 500 

max_depth 25 None 5 5 10 

min_samples_split 6 2 2 6 2 

min_samples_leaf 2 2 6 1 1 

max_features auto log2 log2 log2 log2 

  gradient boosting 

n_estimators 100 150 150 150 100 

learning_rate 0.05 0.1 0.05 0.05 0.1 

loss deviance exponential exponential exponential deviance 

subsample 1 0.9 1 1 0.9 

min_samples_leaf 1 3 1 1 3 

max_depth 3 2 2 2 2 

max_features log2 log2 log2 None None 

  neural network 

epochs 40 40 40 40 10 

batch_size 3000 3000 3000 3000 3000 

learning_rate 0.001 0.001 0.001 0.001 0.001 

drop_out_1 0.25 0.25 0.25 0.25 0.25 

drop_out_2 0.25 0.25 0.25 0.75 0.75 

drop_out_3 0.25 0.25 0.25 0.25 0.25 

n_count_1 400 400 400 400 400 

n_count_2 400 400 400 400 400 

n_count_3 400 100 100 100 100 

reg l2 l1 l2 l1 l1 

scale 0.1 0.1 0 0.1 0 

  stacking 

C 0.05 0.05 0.5 1 0.05 

solver liblinear liblinear saga newton-cg liblinear 
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Table A9. The structure of the dataset for license withdrawal and requirements 
violations for the horizon of 1, 2, 3, 6 and 9 months 

 

  

1 month 2 months 3 months 

train test train test train test 

neg. pos. neg. pos. neg. pos. neg. pos. neg. pos. neg. pos. 

license 
withdrawal 

26644 284 7098 70 26357 571 7034 134 26071 857 6972 196 

N1.0 26739 189 7114 54 26664 264 7106 62 26596 332 7099 69 
N1.1 26750 178 7098 70 26684 244 7086 82 26620 308 7077 91 
N1.2 26696 232 7077 91 26620 308 7064 104 26546 382 7052 116 
N2 26852 76 7163 5 26798 130 7159 9 26746 182 7155 13 
N3 26795 133 7160 8 26716 212 7154 14 26640 288 7150 18 

 
  6 months 9 months 
 train test train test 
 neg. pos. neg. pos. neg. pos. neg. pos. 

license 
withdrawal 

25225 1703 6800 368 24387 2541 6666 502 

N1.0 26392 536 7080 88 26197 731 7067 101 
N1.1 26428 500 7050 118 26251 677 7030 138 
N1.2 26328 600 7021 147 26119 809 7005 163 
N2 26601 327 7145 23 26471 457 7135 33 
N3 26424 504 7138 30 26229 699 7127 41 

Note: neg. and pos. signify whether or not the event of license withdrawal or 
the violation of the requirement occurs. 
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Figures 

 
Figure A1. Metrics on cross-validation and test sets in the forecasting of bank 

license withdrawal 
on cross-validation set (on the left) and on the test set (on the right) 
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Figure A2. Metrics on cross-validation and test sets in the forecasting of the 

violation of capital adequacy ratio 
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Figure A3. Metrics on cross-validation and test sets in the forecasting of the 

violation of common equity Tier 1 ratio 
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Figure A4. Metrics on cross-validation and test sets in the forecasting of the 

violation of Tier 1 capital ratio 
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Figure A5. Metrics on cross-validation and test sets in the forecasting of the 

violation of the instant liquidity ratio 
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Figure A6. Metrics on cross-validation and test sets in the forecasting of the 

violation of the current liquidity ratio 
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Figure A7. Comparison of metric values depending on the number of features 

in the forecasting of license withdrawal 
 


