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Abstract 

This paper presents a fast algorithm for estimating hidden states of Bayesian state space 

models. The algorithm is a variation of amortized simulation-based inference algorithms, where 

numerous artificial datasets are generated at the first stage, and then a flexible model is trained to 

predict the variables of interest. In contrast to those proposed earlier, the procedure described in this 

paper makes it possible to train estimators for hidden states by concentrating only on certain 

characteristics of the marginal posterior distributions and introducing inductive bias. 

Illustrations using the examples of stochastic volatility model, nonlinear dynamic stochastic 

general equilibrium model and seasonal adjustment procedure with breaks in seasonality show that 

the algorithm has sufficient accuracy for practical use. Moreover, after pretraining, which takes 

several hours, finding the posterior distribution for any dataset takes from hundredths to tenths of a 

second. 

JEL codes: C11, C15, C32, C45. 

Keywords: amortized simulation-based inference, Bayesian state space models, neural networks, 

seasonal adjustment, stochastic volatility, SV-DSGE. 
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1. Introduction 

Bayesian state space models are widely used in applied macroeconomics. They are so 

widespread due to the fact that many macroeconomic and econometric models can be written in the 

form of state space models for subsequent estimation on real data. For example, various kinds of 

filters and semi-structural filters (see Hodrick and Prescott (1997), Laubach and Williams (2003)), 

models with stochastic volatility (see Kim, Shepard and Chib (1998), Justiniano and Primiceri 

(2008), Carriero, Clark and Marcellino (2016)), time-varying models (see Hamilton (1989), Primiceri 

(2005), Koop and Korobilis (2012)), mixed frequency models (see Chiu et al (2012) , Schorfheide 

and Song (2015, 2021)), dynamic factor models (see Otrok and Whiteman (1998), Stock and Watson 

(2011)), dynamic stochastic general equilibrium models (see Smets and Wouters (2003, 2007), 

Fernandez-Villaverde, Schorfheide and Rubio-Ramirez (2016)) and agent-based models (see Lux 

(2018), Deli Gatti and Grazzini (2020)). Bayesian parameter estimation makes it possible to mitigate 

the lack of long time series1. 

Despite their flexibility, in practice, estimating Bayesian state space models is a rather 

difficult task. Sampling algorithms are based on an iterative sampling scheme for model parameters 

and states and rely on steps such as Gibbs sampling (see Casella and George (1992)), Metropolis-

Hastings (see Chib and Greenberg (1995)), Hamiltonian Monte Carlo (see Neal (1996)) or sequential 

Monte Carlo (see Del Moral, Doucet and Jasra (2006)). Even in cases where the model is linear and 

Gaussian or discrete with respect to states, sampling can take from tens of minutes to hours. In 

systems of a more general form, researchers use particle filters (see Andrieu, Doucet and Holenstein 

(2010), Chopin, Jacob, and Papaspiliopoulos (2012)), as a result of which estimation time only 

increases. Sampling algorithms are exact in the sense that they converge to the posterior distribution 

as the number of iterations tends to infinity, although the number of iterations required for an estimate 

close to the posterior distribution can be large. An alternative to them are optimization algorithms. 

The most common of them in the context of state space models is the variational Bayes algorithm2 

(see, Wainwright and Jordan (2008), Hoffman et al. (2013)). The variational Bayes algorithm relies 

on minimizing the Kullback-Leibler (or any other) divergence between the approximation and the 

true posterior distribution. It is often faster than sampling algorithms, but its running time is also 

large, especially in cases where the optimization steps cannot be written in analytical form. 

                                                                            
1 In this paper, we focus on time series models, but the proposed algorithm can easily be transferred to hidden 
space models of other types with minor modifications in the architecture. 
2 See Chapters 3 and 5 of Beal (2003) and Gunawan, Kohn, and Nott (2021) for examples of using the 
Bayesian variational algorithm in estimating of state space models. 
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In this paper, we propose a fast algorithm for estimating Bayesian state space models that is 

based on the principles of simulation-based inference (see Cranmer, Brehmer and Louppe (2020)). 

The speed of the algorithm is achieved by amortizing the task of constructing the posterior 

distribution of states, that is, by pretraining a model (a neural network, in our case) that predicts its 

posterior distribution from the data. In doing so, we focus only on states and do this for two reasons. 

First, in many problems it is the states, not the model parameters, that are of particular interest. For 

example, in the detrending problem (see Orphanides and Van Norden (2002)), the trend and cycle 

components, which are determined by hidden states, are of main interest. Second, simulation-based 

inference parameter estimation has been investigated in many other papers (see Appendix A of 

Lueckmann et al. (2021)) and can be easily combined with the approach discussed in this paper. The 

problem of constructing posterior distribution of hidden states is much more complicated due to its 

dimensionality and has not been studied much in the literature. 

Section 2 describes the algorithm for estimating the posterior distribution of the model. 

Section 3 is devoted to the study of application, practical characteristics and comparison of the 

algorithm with commonly used alternatives. Section 4 describes related work. Section 5 discusses 

issues that have not been included in the paper but are important in the context of the proposed 

algorithm. The conclusion is presented in Section 6. 

 

2. Estimation procedure 

2.1. Amortized simulation-based inference 

Our methodology for estimating state space models is based on the idea of estimating 

Bayesian parameters proposed by Beaumont, Zhang and Balding (2002), Blum and Francois (2010) 

and developed by Papamakarios and Murray (2016). The essence of the methodology is to simulate 

the joint distribution of parameters and data, and then predict the parameters conditional on data. 

Formally, during the first step, a dataset is simulated from a model with a prior distribution 

𝑝(𝜃) and a likelihood function 𝑝(𝑦|𝜃). The 𝑖-th point consists of parameters 𝜃𝑖~𝑝(𝜃) and observed 

variables 𝑦𝑖~𝑝(𝑦|𝜃𝑖). In the second step, an estimator is fitted to predict the distribution 𝑝(𝜃|𝑦) or 

its characteristics, for example, by minimizing the cross-entropy between the simulated data and 

some parametric family of distributions 𝑞𝜑(𝜃|𝑦)𝑝(𝑦): 

𝜑∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜑(−∑ (𝑙𝑜𝑔𝑞𝜑(𝜃𝑖|𝑦𝑖) + 𝑙𝑜𝑔 𝑝(𝑦𝑖))
𝑁
𝑖=1 )  (1) 
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where 𝜑 is the vector of parameters of distribution 𝑞𝜑(𝜃|𝑦), 𝑁 is the number of simulations. We will 

omit 𝑙𝑜𝑔 𝑝(𝑦𝑖) term due to its independence from 𝜑 in the following.  

The estimated distribution will tend to the posterior for any 𝑦 with an infinite number of 

simulations and a sufficiently flexible parametric family 𝑞𝜑 (see Appendix A.1 for an informal 

proof). This actually means that the algorithm has the property of amortization, or in other words, 

that once estimated, the conditional distribution 𝑞𝜑∗(𝜃|𝑦) can be used for any data, does not require 

re-estimation of the model and can be calculated almost instantly. 

As can be seen, this method for estimating posterior distributions (hereinafter, we will call it 

NPE following Papamakarios and Murray (2016)) does not require knowledge of 𝑝(𝜃) and 𝑝(𝑦|𝜃) 

in an explicit form but relies only on the ability of simulating data, which is natural for most models. 

So, it falls into the category of simulation-based inference (SBI) methods (or likelihood-free 

inference). 

2.2. From Bayesian models to state space models 

The parameters of state space models can be estimated using the procedure presented in 

Section 2.1, however the goal of this paper is to estimate the hidden states. It is easy to see that if we 

replace the parameters with hidden states in the loss function, then the procedure described above 

remains valid (see Appendix A.2). Thus, in general, the algorithm for finding the posterior 

distribution can be written as shown below: 

Algorithm 1. Simulation based state space model inference 

For 𝑖 = 1, … , 𝑁: 

1. Simulate states and observable data: 

1.a. Draw model parameters from the prior: 

𝜃𝑖~𝑝(𝜃) 

1.b. Draw states from the conditional state distribution: 

𝑠𝑖~𝑝(𝑠|𝜃𝑖) 

1.c. Draw data from the conditional data distribution: 

𝑦𝑖~𝑝(𝑦|𝑠𝑖, 𝜃𝑖) 

2. Find the parameters of the posterior approximation of hidden states: 

𝜑∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜑(−∑ 𝑙𝑜𝑔 𝑞𝜑(𝑠𝑖|𝑦𝑖)
𝑁
𝑖=1 )    (2) 

Despite the simplicity of Algorithm 1, there are several practical difficulties when moving 

from finding posterior distribution for the parameters to finding the distribution of states. First, it is 
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a large dimension of the hidden space. Despite the presence of various kinds of flow transformations 

(see Rezende and Mohamed (2015)), which are often used in SBI and in many cases recover joint 

distributions adequately, their application for problems of this size, complicated by amortization, is 

costly to compute and is associated with optimization challenges. Second, it is the large 

dimensionality of the data. It is nearly impossible to find summary statistics that reduce the 

dimensionality of the data for hidden states, in contrast to the problem of parameter estimation, where 

this is common practice (see, for example, SIR (T.9) and Lotka-Voltera (T.10) models in Lueckmann 

et al (2021)). To overcome these problems and simplify the task of training the model, we avoid 

modeling the dependencies between variables focusing on characteristics of marginal distributions 

and introduce an inductive bias for 𝑞𝜑(𝑠|𝑦). 

2.3. Marginal distribution loss 

Moving from the joint to the marginal distributions is equivalent to subdividing the task into 

a set of one-dimensional tasks. In such case, the log-probability for the parametric family 𝑞𝜑(𝑠|𝑦) is 

written as: 

𝑙𝑜𝑔 𝑞𝜑(𝑠|𝑦) = ∑ ∑ 𝑙𝑜𝑔 𝑞𝜑𝑡,𝑘(𝑠
𝑡,𝑘|𝑦)𝑘

𝑘=1
𝑇
𝑡=1    (3) 

where 𝑡 and 𝑘 represent the time period and the state index in state vector. Note that for each state, 

the vector of parameters 𝜑𝑡,𝑘 is generally its own and 𝜑 consists of a set of these vectors. 

We use the normal distribution with mean 𝑚𝜑𝑡,𝑘
(𝑦) and standard deviation 𝜎𝜑𝑡,𝑘(𝑦) for 

𝑞𝜑𝑡,𝑘(𝑠
𝑡,𝑘|𝑦). It is easy to show that for sufficiently flexible 𝑚𝜑𝑡,𝑘 and 𝜎𝜑𝑡,𝑘 such an approximation 

exactly recovers the mean and standard deviation of the true posterior distribution (see Appendix 

A.3). 

Moreover, the choice of normal distribution and cross-entropy as a loss function can be 

relaxed. Therefore, a mixture of normals or a small-scale flow-based model can replace normal 

distribution for marginal densities and any M-estimator (see Chapter 5 in Van der Vaart (2000)), 

such as quantile regression loss, can be used instead of cross-entropy. 

2.4. Estimator architecture 

A neural network is chosen as an estimator. It is a class of flexible models that can 

approximate almost any relationship in theory3. A natural architecture that is similar to filtering and 

smoothing in state space models is a Bidirectional Recurrent Neural Network (Bidirectional RNN). 

                                                                            
3 See Goodfellow, Bengio and Courville (2016) for an introduction to neural networks and their properties. 
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By sharing parameters for models with a «near» stationary data generation process4,5, this structure 

allows to move away from estimating the neural network for each state separately and calculate the 

loss function for all states in a single pass over the data.  

To make the network architecture more flexible, we use data convolution of various lengths 

as RNN input in addition to the raw data, and transform the output of RNN by applying a linear 

transformation or a fully connected neural network. 

 

3. Applications 

To illustrate the properties of the proposed method, we estimate three models: stochastic 

volatility model, non-linear DSGE model and seasonal adjustment model with structural breaks in 

seasonality. 

3.1. Stochastic volatility model 

The stochastic volatility model (see Kim, Shepard and Chib (1998)) is a classic example for 

testing various states estimation algorithms in state space models (see Tan, Bhaskaran and Nott 

(2020)). The model specification is exactly the same as Tan, Bhaskaran and Nott (2020) and 

presented in Appendix B.1. To simplify the learning process, the logarithm of absolute values of the 

observed data is fed into the neural network as an input (details of the network architecture and the 

training algorithm are presented in Appendix B.2). The model is trained on 20,000,000 generated 

series with a length of 800 to 1,200 observations. 

First, we demonstrate the quality of the algorithm on the data sampled from the data 

generation process. Figure 1 shows examples of the true values of volatility logarithms and mean of 

posterior distribution approximation (± 2 standard deviations). The figure demonstrates that the true 

values are quite well estimated by the neural network. As a benchmark for future studies, we also 

present the negative log-likelihood (hereinafter, NLL) and mean squared error (hereinafter, MSE) on 

a randomly generated 1,000,000 runs in Table 1. 

Unfortunately, calculation of the accuracy metrics for other algorithms, such as MCMC or 

stochastic variational Bayes, is difficult to compute (see the discussion on quality metrics for SBI in 

Lueckmann et al. (2021)). Our focus therefore lies on the comparison of the results for NYSE and 

                                                                            
4 We use the term «near» stationary data generation process to emphasize the possibility of using different 
state distributions for the initial time period. 
5 One can always connect several networks, if there is a shift in the data generation process. 
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GBPUSD6 datasets similarly to Tan, Bhaskaran and Nott (2020). The results are compared with the 

adaptive MCMC algorithm based on the mixture of normals for chi-square distribution 

approximation, which was proposed by Kim, Shepard and Chib (1998), and the stochastic variational 

Gaussian approximation (hereinafter, VB) with a sparse precision matrix (both algorithms are given 

in Appendix B.3). As can be seen in Figure 2, although the neural network estimates are a bit noisy, 

they are close to the MCMC algorithm, which serves as the gold standard, as well as the variational 

Bayes algorithm, which is one of the fastest and most accurate approximations. It should be noted 

that the NYSE dataset is almost twice the maximum size of the simulation, and the neural network 

has never seen data of that length. Nevertheless, the trained model copes with this task. 

Figure 1. True values of volatility logarithms and approximation of posterior distribution on 

artificial data (mean ± 2 std) 

 

 

 

 

Table 1. NLL and MSE for various applications (mean ± 2 std) 

 NLL MSE 

SV (8.17 ± 0.21) × 10−2 (2.92 ± 0,02) × 10−1 

SV-DSGE (−1.64 ± 0,00) × 10−1 (4.77 ± 0,00) × 10−2 

SA −3.00 ± 0,01 (1.27 ± 0,02) × 10−3 

                                                                            
6 Calculating metrics, such as C2ST, are not informative for the joint distribution. Information about correlations 
is important for classification, but the algorithm used assumes the diagonal covariance matrix. Calculation of 
C2ST for marginal distributions requires training the number of classifiers equal to the number of hidden 
states. So, we use only visual analysis. 
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Figure 2. Comparison of NPE with MCMC and VB on real data for stochastic volatility 

model (mean ± 2 std) 

 

 

3.2. Stochastic volatility DSGE model 

The stochastic volatility model, while contains many hidden states, is a univariate model, 

both in terms of data and output7. The DSGE model was chosen to test the amortized SBI algorithm 

in multivariate context. This class of models is widely used by macroeconomists, both for practical 

purposes (see Linde, Smets and Wouters (2016)) and in academic research (see Walsh (2010)). 

Although solving non-linear DSGE models is beyond the scope of this paper, we seek to demonstrate 

that the proposed algorithm works well for models where filtering and likelihood estimation cannot 

be executed using the Kalman filter as in the case of linear models8. A simplified DSGE model9 with 

stochastic volatility from Diebold, Schorfheide and Shin (2017) was chosen for these reasons. This 

model can be solved using standard algorithms for linearized models (see Blanchard and Kahn 

(1980), Anderson and Moore (1985), Klein (2000), Sims (2002)). Nonlinearity is introduced after 

the solution step as the time-varying volatility of model shocks. The neural network is estimated on 

                                                                            
7 The latter could potentially be an advantage, though, as information from different sources can help in training 
neural network parameters. Moreover, it is possible to train a univariate model for each dimension of state 
vector, which reduces the problem to the previous one in terms of output. 
8 Log-linearized versions of these models are often used to overcome the computational difficulties with 
solving and estimating non-linear models. 
9 We exclude the inflation target shock from the model and inflation expectations from the observed variables 
to avoid the issues of missing variables and their impact on the result. A number of additional experiments 
have shown that using trained values for neural network inputs in place of missing variables (see Lueckmann 
et al. (2017)) and introducing additional dummy variables to the RNN input can cope with this task. However, 
we will focus here on a simpler version of the model to separate the effect of multiple observed variables from 
the effect of missing data. Estimates of DSGE models using SBI will be the subject of a separate paper where 
we will also touch on this issue.  



Fast Estimation of Bayesian State Space Models Using Amortized Simulation-Based Inference 12 
 

 
 

50,000,000 generated datasets with a length of 180 to 200 points and compared with the adaptive 

MCMC algorithm (model description, neural network architecture and MCMC implementation are 

described in Appendix C). 

To illustrate the properties of NPE, we concentrated on the estimation of stochastic volatilities 

and present graphs and metrics for these states. However, unobservable shocks (more precisely, the 

logarithms of their absolute values) were also used in the estimation as a hint on the intermediate 

outputs of the neural network. Figure 3 shows that the trained neural network results are similar to 

MCMC for the US data from 1964Q2 to 2011Q1 (latest vintage in Diebold, Schorfheide and Shin 

(2017)). As for the previous model, Table 1 shows the NLL and MSE on 1,000,000 randomly 

generated datasets for future comparisons. 

Figure 3. Comparison of NPE with MCMC on US data for DSGE model with stochastic 

volatility, stochastic volatility (mean ± 2 std) 

 

 

3.3. Seasonal adjustment with structural breaks in seasonality 

In addition to problems based on well-verified formulas for transition and observation 

equations, SBI is also suitable for those models where simulations are the primary focus. Usually, 
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this occurs in models where deriving equations is too cumbersome or simply impossible to compute. 

Special cases are tasks where it is easy to generate a lot of different data which shows the model how 

it should behave in various situations. 

As an example, we show how a quarterly seasonal adjustment model that considers structural 

shifts in the seasonal component can be built. As will be shown below, a traditional X13 ARIMA-

SEATS procedure (see US Census Bureau (2017)) does a poor job of this. An additional advantage 

is the automatically generated credible intervals. 

Appendix D presents the procedure for generating artificial series with a length of 40 to 80 

quarters. In fact, it consists of generating a seasonal and non-seasonal component with the probability 

of a shift appearing in the seasonal part. Thus, the resulting series may not contain a break. 

We compare NPE not with a sampling algorithm, but with X13 for measuring the quality, in 

contrast to the previous two models. The purpose of this experiment is to demonstrate how one can 

easily generate examples of model behavior, thus specifying an implicit Bayesian model. In practice, 

it is usually difficult to construct a fast MCMC algorithm in such cases. However, comparison with 

other algorithms that solve the same practical problem is of interest from the point of view of 

estimating the performance of the proposed algorithm. 

Figure 4 shows random examples illustrating how the proposed procedure and X13 behave 

on series with a shift in seasonality (the gray area shows 1.5 years around the shift). X13 does not 

adequately cope with the task of detecting seasonality around the quarter of shift, while NPE, on the 

contrary, is robust. We calculated the MSE on 100,000 randomly generated runs for X13 and on 

1,000,000 runs for the neural network. The error for NPE is smaller, as can be seen from Table 2. 

The smaller errors in comparison to X13 are not unexpected by themselves since cross-entropy 

optimization should provide the estimator with the lowest MSE on this dataset. However, the gap 

between the errors on the series with and without shifts further emphasizes that the algorithm 

proposed in the paper is more accurate than the alternative widely used among macroeconomists. 

Figure 4. Comparison of NPE and X13 ARIMA-SEATS on artificial series with a break in 

seasonality (mean ± 2 std) 
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Table 2. MSE for NPE and X13-ARIMA-SEATS on artificial data 

  
Full sample With shifts Without shifts 

NPE 1.3 × 10−3 3.0 × 10−3 1.1 × 10−3 

X13-ARIMA-SEATS 5.4 × 10−3 25.0 × 10−3 3.1 × 10−3 
 

3.4. Computation and implementation time 

As noted above, NPE works almost instantly due to possessing an amortization property. 

Depending on the task, calculating an approximation of the posterior distribution on the CPU 

(Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz, 16GB RAM) takes tenths of a second for a 

pretrained model. Estimation of neural network parameters on Pytorch10  (see Paszke et al. (2019)) 

using GPU (NVIDIA GeForce RTX 2070) takes about 12, 12 and 2 hours for the stochastic volatility 

model, DSGE model and seasonal adjustment model, respectively. Comparing the running time for 

amortized algorithms with alternatives that do not possess such properties comes with difficulties. 

On the one hand, Bayesian model estimation for a fixed dataset takes less time in our examples when 

MCMC or VB algorithms are used (see Table 3). This is because the amortized algorithm requires 

pretraining of a neural network. On the other hand, a neural network trained once can be used for 

various datasets (including data of different lengths) which is an advantage in the case of multiple 

estimations. 

                                                                            
10 Generation of artificial data for the model is run on the CPU and training on the GPU. 
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Table 3. Time of posterior computation per one dataset11 

 NPE VB MCMC Other 

 CPU GPU CPU GPU CPU CPU 

SV 0.42s 0.08s 1h 27m 16m 19m - 

SV-DSGE 0.14s 0.02s - - 9h18m - 

SA 0.14s 0.05s - - - 0.27s 

 

The implementation of the NPE algorithm uses already available neural network libraries 

(coding a neural network architecture usually takes only tens of minutes since the layers of the neural 

network are already implemented in the respective libraries) and almost always turns out to be much 

easier than the implementation of MCMC and even sometimes variational estimation. The 

implementation of MCMC requires the derivation of the sampling algorithm and the writing of 

program code, which is often much more complicated than for NPE. Like NPE, stochastic VB 

algorithms are just as easy to implement in most cases (if automatic differentiation packages are used 

and there are no modules that require manual differentiation coding). The key difference is that the 

joint density of parameters, hidden states and data is used instead of data sampling procedure. 

An important point for stochastic optimization algorithms (NPE and VB) is also the ability 

to almost effortlessly transfer the computation to the GPU. 

 

4. Related work 

The algorithm proposed in this paper is closely related to several directions presented in the 

literature. Our work is part of the literature on SBI (or likelihood-free inference) algorithms (see 

Crammer, Brehmer and Louppe (2020)). Until recently, Bayesian direction in this field has 

developed mainly as approximate Bayesian computations (hereinafter, ABC). ABC approximate the 

likelihood functions by introducing an auxiliary likelihood function that depends on the distance 

between summary statistics of the data and the corresponding statistics of the simulated data. Classic 

sampling algorithms are then used (see Sisson, Fan and Beaumont (2018)). The progress of machine 

learning algorithms, and in particular neural networks, has given rise to a whole family of algorithms 

that directly train posterior distributions (see Papamakarios and Murray (2016), Lueckmann et al. 

(2017), Greenberg, Nonnenmacher and Macke (2019), Durkan, Murray and Papamakarios (2020)), 

                                                                            
11 We choose the number of iterations based on convergence of parameters for MCMC (half of iterations is 
a burn-in period) and convergence of loss for VB. 
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likelihood functions (see Wood (2010), Lueckmann et al. (2019), Brehmer et al. (2020), 

Papamakarios, Sterratt and Murray (2019)) or likelihood function ratios (see Brehmer et al (2020), 

Hermans, Begy and Louppe (2020), Durkan, Murray and Papamakarios (2020)). These methods are 

not sensitive to tolerance hyperparameter and chosen distance between simulation data and summary 

statistics, contrary to ABC. However, to the best of our knowledge, apart from a few papers on 

probabilistic programming (see Le, Baydin and Wood (2017), Baydin et al. (2019), Munk et al. 

(2022)), researchers concentrate mainly on parameters, not states. Research on probabilistic 

programming has two key differences from the approach proposed here. First, it uses the pretrained 

neural network as a proposal distribution for importance sampling, rather than directly to 

approximate the posterior distribution. Second, a neural network in probabilistic programming takes 

into account the relationship between variables to achieve smaller variance for the importance 

sampling weights, which is a considerably more difficult task in terms of optimization12. Moreover, 

unlike this paper, implementation from scratch or modification of probabilistic programming 

algorithms for tasks that do not fit into the framework of standard libraries13 is quite complicated, 

since it requires a deep knowledge of the addressing of random variables. 

Our research is also closely related to the estimation of economic models through simulations. 

The simulated method of moments and its modifications (see McFadden (1989), Duffy and Singleton 

(1993), Gallant and Tauchen (1996)) are common in the frequentist estimation of the structural 

parameters of models14. There is a similar field of research that estimates model parameters based on 

minimizing various divergences between simulated and real data (see Nickl and Pötscher (2010), 

Kaji, Manresa and Pouliot (2022)). Gallant and McCalloch (2009)15 proposed a Bayesian version of 

the simulated method of moments. A recent paper by Fen (2022) uses sequential (non-amortized) 

NPE for Bayesian parameter estimation. As for SBI, not many papers devoted to simulated 

estimation of states rather than parameters exist. The closest known to us is the paper by Deli Gatti 

and Grazzini (2020), where the authors estimate states (output and investment gap forecasts) on 

artificial data using nonparametric kernel estimation. The idea is very close to SBI and to what is 

proposed here, but it is computationally difficult with a large number of hidden states as the authors 

themselves note. 

                                                                            
12 It is also worth noting that probabilistic programming uses state sampling which depends on the sampled 
states of the previous period. This can lead to accumulation of approximation errors over long periods. Such 
an architecture is not quite suitable for direct approximation. However, this is not critical for subsequent 
resampling, especially if sequential importance sampling is used instead of importance sampling. 
13 See, for instance, PyProb. 
14 See a list of applications in Carrasco and Florens (2002). 
15 Gallant, Giacomini and Ragusa (2013) also developed a version of the Bayesian simulation method of 
moments based on a particle filter for models with hidden states. 
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Meta-learning (see Finn and Levine (2019)) is close to SBI in its mathematical formulation. 

Like SBI, meta-learning is based on the idea of learning from many similar tasks (see Vinyals et al. 

(2016)). The key differences are purpose and data. Unlike SBI, meta-learning focuses on the task of 

predicting rather than finding the posterior distribution. Furthermore, meta-learning usually works 

with real data, not simulated ones. 

Many works on variational autoencoders have been devoted to the amortization of finding 

the distribution of hidden states (see Kingma and Welling (2019)). However, there are a number of 

differences from this paper. First, the data generation process is usually specified with a rather 

flexible model such as a neural network (see Kingma and Welling (2014)) or a Gaussian process (see 

Dai et al. (2016)) rather than more classical models where the hidden states have greater 

identifiability and interpretability. In addition, the model is usually non-Bayesian in nature16. Second, 

the loss function that is minimized is the KL divergence between the approximate posterior and 

posterior distributions, while in SBI it is the KL divergence between the posterior and approximate 

posterior distributions. The asymmetry of KL divergence leads to the fact that, with few exceptions 

(see Tran, Ranganath and Blei (2017)), there are not enough simulations to train variational 

autoencoders and one must calculate the probabilities of the data generation process. Also, in the 

case of diagonal approximation (as in Section 2.3), this leads to underestimation of variance (see 

Blei, Kucukelbir and McAuliffe (2018)). Third, real, not artificial, data are used for training 

variational autoencoders as for meta-learning. 

 

5. Discussion 

As has been shown in many papers (see Lueckmann et al. (2021)), amortization leads to the 

need for longer training of SBI algorithms than their sequential counterparts. Despite this, we use the 

amortized NPE algorithm for two reasons. First, sequential SBI algorithms are usually applied to the 

problems of small dimension (the output of neural network dimension), and their adaptation to the 

high-dimensional problem of finding the posterior distribution of states is not trivial and requires 

solving more practical issues. In particular, if one tries to focus on marginal densities, as is done in 

this paper, the states generated for new rounds will not look like posterior distribution due to the lack 

of dependence between variables. The states will be quite noisy, which worsen convergence in most 

                                                                            
16 Basically, neural networks are used as a data generation model, which by their nature are frequentist. 
Moreover, despite the fact that many applications use dropout for regularization (see Srivastava et al. (2014)), 
which has a Bayesian interpretation (see Kingma, Salimans and Welling (2015) and Gal and Ghahramani 
(2016)), the parameters are common to all data. This is ideologically different from the idea of amortizing 
models. 
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cases. Secondly, in contrast to some research on SBI, we do not set the task to finding the best 

algorithm under the constrained budget for the number of simulations (see Lueckmann et al. (2021)). 

Sequential algorithms give a significant gain for such tasks. However, the main goal of this paper is 

to build an algorithm that replaces long-running alternatives (as in the first two examples) or helps 

to estimate models where other algorithms fail (as in the third example) 17. Amortization is a great 

property that helps to solve this problem if the model is frequently re-estimated. 

Many issues related to the estimation of the posterior distribution of states are beyond the 

scope of this paper and require further research. Some of them are discussed below. 

The posterior distributions estimated using the proposed algorithm, although close to the 

MCMC results, nevertheless differ slightly. The results are slightly noisy when estimating stochastic 

volatility, while in the DSGE model they are biased. This signals an opportunity for further 

improvements of the neural networks by increasing the flexibility of the neural network architecture, 

the number of simulations or by modifying the training procedure. It is well known that for a certain 

learning rate schedule, stochastic optimization procedures converge to one of the local optima in the 

asymptotics (see Chapter 5 in Kushner and Yin (2003)). The exact (even local) optimum is not 

achieved with a finite number of iterations18,19. An insufficiently flexible network and/or a small 

number of observations in the neighborhood of real data can lead to a situation where the model is 

unable to predict the posterior distribution accurately, even at the optimum20. Moreover, the quality 

of the posterior distribution approximation is likely to deteriorate with increasing problem 

dimensionality. Hence, one of the main tasks for the future is to study the relationship between 

scalability, approximation quality and neural network training time. 

The mean-field Gaussian approximation considered here is usually not a problem from a 

practical point of view, because in most cases, researchers are interested in the first and second 

moments of the marginal distributions of states. Although extensions have clear theoretical solutions 

(M-estimators for estimating other characteristics and more flexible families of distributions), their 

practical implementation requires further research21. 

                                                                            
17 It is implicitly assumed that a large number of model simulations can be performed in adequate time. 
18 This usually means that the learning rate does not tend to zero. 
19 Mandt, Hoffman and Blei (2017) provide intuitions about the behavior of the estimation procedure at non-
zero learning rates. 
20  A good example of such type an improvement in the field of text analysis is the GPT-3 model (see Brown 
et al. (2020)). It has reached a fundamentally new level compared to previous models due to an order of 
magnitude more parameters than previously used and a huge dataset. 
21 In a number of preliminary experiments that were not included in the paper, we saw that the quantile loss 
also shows good results for the marginal distributions. 
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We have bypassed the issues of forecasting and missing variables, which are related in the 

sense that the forecasting problem can be thought of as a problem of constructing a posterior 

distribution for the missing variables on the forecasting horizon. To deal with missing variables, 

models can be extended by introducing additional dummy variables as one of the inputs of the neural 

network, showing the presence of a miss, and/or by filling in the miss with learnable parameters as 

done in Lueckmann et al. (2017).  A similar method or alternatives based on meta-learning ideas (see 

Harrison, Sharma and Pavone (2020)), where only the predicted variables are used as the neural 

network output, can be applied to build prediction models. 

NPE has both advantages and disadvantages in terms of speed as shown in Section 3.4. 

Therefore, the choice to use NPE or not should depend on the situation. We recommend using the 

NPE algorithm if frequent re-estimation of the model is expected, or if alternative algorithms are 

slow, or fail to do the job at all. At the same time, we also advise to verify the trained algorithm 

before use by comparing it with alternative ones for approximating the posterior distribution (when 

they are not too slow). If such verification is impossible, it is recommended to carry out at least a 

visual analysis on artificially generated data. 

 

6. Conclusions 

The amortized simulation-based algorithm proposed in this paper for estimating hidden states 

of Bayesian state space models provides an alternative to already existing algorithms in this field. In 

contrast to many previous papers, we consider a new approach that approximates posterior marginal 

distribution of states and that does not rely on probability density functions for prior distributions, 

transition and observation equations, but that uses only simulations of artificial data. 

The NPE algorithm shows results similar to other algorithms for the stochastic volatility and 

DSGE models but after training, it works nearly instantly. In addition, as shown in the example with 

seasonal adjustment, it also performs well on tasks where the Bayesian model is not specified directly 

but rather through the process of simulating various situations and correct behavior in them. 
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Appendix A. Informal proofs 

A1. NPE asymptotic  

Given a flexible parametric family 𝑞𝜑(𝜃|𝑦) and an infinite number of datasets, problem (1) 

becomes equivalent to the following problem: 

𝑞∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑞𝐸𝑝(𝜃,𝑦)(− 𝑙𝑜𝑔 𝑞(𝜃|𝑦) − 𝑙𝑜𝑔 𝑝(𝑦))

= 𝑎𝑟𝑔𝑚𝑖𝑛𝑞∫∫(− 𝑙𝑜𝑔 𝑞(𝜃|𝑦) − 𝑙𝑜𝑔 𝑝(𝑦))𝑝(𝜃, 𝑦)𝑑𝜃𝑑𝑦

= 𝑎𝑟𝑔𝑚𝑖𝑛𝑞∫(−∫ 𝑙𝑜𝑔 𝑞(𝜃|𝑦) 𝑝(𝜃|𝑦)𝑑𝜃)𝑝(𝑦)𝑑𝑦 

Note that the optimization problem is split into a set of separate cross-entropy minimizations for each 

individual dataset −∫ 𝑙𝑜𝑔 𝑞(𝜃|𝑦) 𝑝(𝜃|𝑦)𝑑𝜃. The cross-entropy minimum is reached when the 

distributions coincide, which means that 

𝑞∗ = 𝑝(𝜃|𝑦) 

A2. NPE for states 

The only thing we need to prove for the validity of Algorithm 1 is that the joint distribution 

of sampled states and data is the marginal distribution of the data generation process. We can then 

use the results of Appendix A.1 by redefining 𝑠 as 𝜃. 

The sample 𝜃𝑖 , 𝑠𝑖 , 𝑦𝑖 from Algorithm 1 is identical to the sample from the data generation 

process, i.e. 𝜃𝑖 , 𝑠𝑖 , 𝑦𝑖 ~ 𝑝(𝜃, 𝑠, 𝑦). Integrating over 𝜃 we obtain that 𝑠𝑖, 𝑦𝑖  ~ 𝑝(𝑠, 𝑦), where  𝑝(𝑠, 𝑦) is 

the marginal distribution of the data generation process. 

A3. NPE for marginal distribution loss 

Consider an M-estimator loss function 𝑚(𝑥, 𝑠, 𝑦), where 𝑦 is the set of observed variables, 𝑠 

is the set of hidden states, and 𝑥 is the set of posterior distribution characteristics estimated by the 

M-estimator. Let’s assume that 𝑓𝜑(𝑦) is a parametric family of functions that maps dataset to the 

characteristics of the posterior distribution. With a flexible function 𝑓 and the number of simulations 

tending to infinity, we obtain  

𝑓∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑓𝐸𝑝(𝑠,𝑦)𝑚(𝑓(𝑦), 𝑠, 𝑦) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑓∫(∫𝑚(𝑓(𝑦), 𝑠, 𝑦)𝑝(𝑠|𝑦)𝑑𝑠) 𝑝(𝑦)𝑑𝑦 

The problem splits into a set of minimizations for individual datasets ∫𝑚(𝑓(𝑦), 𝑠, 𝑦)𝑝(𝑠|𝑦)𝑑𝑠 and 

𝑓∗(𝑦) coincides with the M-estimator asymptotic value for each 𝑦 similarly to Appendix A.1. Thus, 

a set of classical M-estimators can be used to estimate the characteristics of the posterior distribution. 
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Means and standard deviations converge to their true values when an independent normal 

distribution is used as an approximation for the posterior distribution. So, if the function 𝑓 is 

sufficiently flexible and the number of simulations tends to infinity, the mean and standard deviations 

converge to their true values. 

 

Appendix B. Stochastic volatility model 

B1. Model 

Prior: 

𝛼~𝑁(0, √10),        𝜅~𝑁(0, √10),        𝜓~𝑁(0, √10) 

𝜎 = log(1 + 𝑒𝛼) , 𝜌 =
1

1 + 𝑒−𝜓
 

Transition equation: 

𝑆𝑉𝑡~𝑁 (
𝜅

2
(1 − 𝜌) + 𝜌𝑆𝑉𝑡−1,

𝜎

2
) , 𝑡 = 2, … , 𝑇 

𝑆𝑉1~𝑁(
𝜅

2
,

𝜎

2√1 − 𝜌2 
 ) 

Observation equation: 

𝑦𝑡~𝑁(0, 𝑒
𝑆𝑉𝑡) 

 

B2. Architecture and learning algorithm 

Algorithm B1. Pretraining stochastic volatility model (𝐵 =100, 𝑁𝑠𝑖𝑚 = 200 000, 𝑇𝑙𝑏 = 

800, 𝑇𝑢𝑏 = 1200, 𝑐 = 10−30) 

For 𝑛 = 1,… ,𝑁𝑠𝑖𝑚: 

1. Draw 𝑇𝑛 from uniform discrete distribution 𝑇~𝑈(𝑇𝑙𝑏 , 𝑇𝑢𝑏). 

2. Simulate 𝑛𝑡ℎ batch: 

For 𝑏 = 1,… , 𝐵: 

2.a. Draw 𝜎𝑏 , 𝜅𝑏, 𝜌𝑏 from prior. 

2.b. Draw 𝑆𝑉𝑏 = {𝑆𝑉1
𝑏 , … , 𝑆𝑉𝑇𝑛

𝑏 } conditioned on 𝜎𝑏 , 𝜅𝑏, 𝜌𝑏. 
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2.c. Draw �̃�𝑏 = {𝑙𝑜𝑔(𝑐 + |𝑦1
𝑏|) , … , 𝑙𝑜𝑔(𝑐 + |𝑦𝑇𝑛

𝑏 |)} conditioned on 𝑆𝑉𝑏. 

𝑆𝑉𝑛
𝑏𝑎𝑡𝑐ℎ = {{𝑆𝑉1, �̃�1}, … , {𝑆𝑉𝐵, �̃�𝐵}} 

3. Compute per state loss using architecture illustrated in Figure B1: 

𝐿𝑛 = −
1

𝐵𝑇𝑛
∑∑𝑙𝑜𝑔 𝑝 (𝑆𝑉𝑡

𝑏|𝑚𝑡(�̃�
𝑏, 𝜑), 𝜎𝑡(�̃�

𝑏 , 𝜑))

𝑇𝑛

𝑡=1

𝐵

𝑏=1

 

4. Make an optimization step with respect to 𝜑 using ADAM algorithm. 

ADAM (Kingma and Ba (2014)) is applied with standard settings except for the learning rate: 

𝜀𝑛 = {

10−3, 𝑖𝑓 𝑛 < 3 × 104

10−4, 𝑖𝑓 3 × 104 ≤ 𝑛 < 105

10−5, 𝑖𝑓 𝑛 ≥ 105
 

B3. Alternative algorithm for stochastic volatility model 

The algorithms used for comparison are the adaptive MCMC and VB algorithms. The MCMC 

algorithm is based on an approximation of the logarithm of the square of a Gaussian random variable 

as a mixture of 7 normal distributions (see Kim, Chib and Shepard (1998)). For this purpose, the 

observation equation is rewritten as: 

𝑙𝑜𝑔 𝑦𝑡
2 = 2𝑆𝑉𝑡 +∑𝑧𝑡𝑒𝑡

𝑘

7

𝑘=1

 

𝑒𝑡
𝑘~𝑁(𝜇𝑘 , 𝜎𝑘) 

𝑝(𝑧𝑡 = 𝑘) = 𝜔𝑘 

where 𝜇𝑘, 𝜎𝑘, 𝜔𝑘 are constants defined in Kim, Chib and Shepard (1998). Algorithm B2 describes 

the complete procedure. 

Algorithm B2. Adaptive MCMC algorithm for stochastic volatility model (𝑁𝑠𝑖𝑚 =

2000, 𝑐 = 1.5, 𝛴0 = 0.1𝐼) 

For 𝑛 = 1,… ,𝑁𝑠𝑖𝑚: 

1. For 𝑡 = 1,… , 𝑇 draw discrete approximation to chi-squared distribution: 

𝑧𝑡
𝑛~𝑝(𝑧𝑡|𝑆𝑉𝑡

𝑛−1, 𝑦𝑡) 
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Figure B1. Neural network architecture for calculating mean and standard deviation in the 

stochastic volatility model 
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2. Draw parameters 𝜃 = {𝛼, 𝜅, 𝜓} using Random Walk Metropolis-Hastings algorithm with 

adaptive proposal (see Roberts and Rosenthal (2009)): 

𝑞(𝜃′|𝜃𝑛−1) = 0.95𝑁 (𝜃𝑛−1,
𝑐2

3
𝛴𝑛−1) + 0.05𝑁 (𝜃

𝑛−1,
0.012

3
𝐼) 

and acceptance rate: 

𝑎𝑟𝑛 = min (
𝑝(𝑦1, … , 𝑦𝑇|𝑧1

𝑛, … , 𝑧𝑇
𝑛, 𝜃′)𝑝(𝜃′)

𝑝(𝑦1, … , 𝑦𝑇|𝑧1
𝑛, … , 𝑧𝑇

𝑛, 𝜃𝑛−1)𝑝(𝜃𝑛−1)
, 1) 

3. Draw stochastic volatility: 

𝑆𝑉1
𝑛, … , 𝑆𝑉𝑇

𝑛~𝑝(𝑆𝑉1, … , 𝑆𝑉𝑇|𝑧1
𝑛, … , 𝑧𝑇

𝑛, 𝑦1, … , 𝑦𝑇 , 𝜃
𝑛) 

Note that after introducing the variables 𝑧1, … , 𝑧𝑇, steps 2 and 3 of Algorithm B2 can be implemented 

via standard Kalman filter and Kalman sampler procedures (see Durbin and Koopman (2002)). 

The VB estimator uses a Gaussian approximation algorithm where the precision matrix is 

sparse (see Tan and Nott (2018)). 20,000 iterations of the ADAM algorithm with a learning rate of 

0.001 and a batch size of 100 are used for training. 

 

Appendix C. Stochastic volatility DSGE model 

С1. Model 

The DSGE model, similar to Diebold, Schorfheide and Shin (2017) is considered, but with 

several modifications. First, we remove inflation expectations from the observed variables and 

exclude the shock of inflation target from the model to avoid dealing with omitted variables. Second, 

prior distributions are slightly changed for processes associated with stochastic volatility to make the 

simulations more realistic. 

Prior: 

𝜏~𝑁(1.5, 0.36),    𝜈𝑙~𝐺(2, 0.75),    𝜄~𝐵(0.5, 0.15),    𝜁~𝐵(0.5, 0.1),    𝜓1~𝑁(1.5, 0.25), 

𝜓2~𝑁(0.12, 0.05) ,   − 400 𝑙𝑜𝑔 𝛽 ~𝐺(1, 0.4),   400 𝑙𝑜𝑔 𝜋∗~𝐺(2.48, 0.4), 

100 𝑙𝑜𝑔 𝛾 ~𝑁(0.4, 0.1),    𝜌𝑅~𝐵(0.5, 0.2),    𝜌𝑔~𝐵(0.5, 0.2),    𝜑𝑧~𝑈(−1, 1), 

(100𝜎𝑅)
2~𝐼𝐺(0.1, 2),    (10𝜎𝑔)

2
~𝐼𝐺(0.1, 2),    (10𝜎𝑧)

2~𝐼𝐺(0.1, 2),    (0.2𝜎𝑔
𝑆𝑉)

2
~𝐼𝐺(0.05, 2), 

(0.2𝜎𝑧
𝑆𝑉)2~𝐼𝐺(0.05, 2),    (0.2𝜎𝑅

𝑆𝑉)2~𝐼𝐺(0.05, 2),    𝜌𝑔
𝑆𝑉~𝑁(0.9, 0.07),    𝜌𝑧

𝑆𝑉~𝑁(0.9, 0.07), 

𝜌𝑅
𝑆𝑉~𝑁(0.9, 0.07) 
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where 𝑁(𝑎, 𝑏), 𝐵(𝑎, 𝑏), 𝐺(𝑎, 𝑏) are normal, beta and gamma distributions with mean 𝑎 and standard 

deviation 𝑏, 𝑈(𝑎, 𝑏) is a uniform distribution with upper and lower bounds 𝑎 and 𝑏, 𝐼𝐺(𝑎, 𝑏) is an 

inverse gamma distribution with probability density 𝑝(𝑥)~𝑥−𝑏−1𝑒−
𝑏𝑎2

2𝑥 . 

Transition equations: 

The transition equations are given in the form: 

𝑠𝑡~𝑁(𝐴(𝜃)𝑠𝑡−1, 𝐵(𝜃)𝑑𝑖𝑎𝑔(𝑒
𝑆𝑉𝑡)𝐵𝑇(𝜃)), 𝑡 = 2,… , 𝑇 

𝑆𝑉𝑡 = {𝑆𝑉𝑡
𝑔
, 𝑆𝑉𝑡

𝑧, 𝑆𝑉𝑡
𝑅} 

𝑠1~𝑁(0, 𝑃(𝜃)) 

𝑆𝑉𝑡
𝑖~𝑁(𝜌𝑖

𝑆𝑉𝑆𝑉𝑡−1
𝑖 , 𝜎𝑖

𝑆𝑉), 𝑡 = 2, … , 𝑇,   𝑖 ∈ {𝑔, 𝑧, 𝑅}  

𝑆𝑉1
𝑖~

(

 0,
𝜎𝑖
𝑆𝑉

√1 − (𝜌𝑖
𝑆𝑉)

2
 )

 , 𝑖 ∈ {𝑔, 𝑧, 𝑅}  

where 𝜃 = {𝜏, 𝜈𝑙, 𝜄, 𝜁, 𝜓1, 𝜓2, 𝛽, 𝜋∗, 𝛾, 𝜌𝑅 , 𝜌𝑔, 𝜑𝑧 , 𝜎𝑅 , 𝜎𝑔, 𝜎𝑧}, 𝑠𝑡 = {𝑦𝑡, 𝑐𝑡, 𝑔𝑡, 𝜋𝑡, 𝑅𝑡 , 𝑧𝑡, 𝑑𝑦𝑡}, 𝑃(𝜃) is 

the solution of equation:  

𝑃(𝜃) = 𝐴(𝜃)𝑃(𝜃)𝐴𝑇(𝜃) + 𝐵(𝜃)𝐵𝑇(𝜃) 

and 𝐴(𝜃) and 𝐵(𝜃) is a stable solution22 of the following linear system of stochastic discrete 

equations: 

𝑐𝑡 = 𝐸𝑡(𝑐𝑡+1 + 𝑧𝑡+1) −
1

𝜏
(𝑅𝑡 − 𝐸𝑡𝜋𝑡+1) 

𝜋𝑡 =
𝜄

(1 + 𝛽𝜄)
𝜋𝑡−1 +

𝛽

(1 + 𝛽𝜄)
𝐸𝑡𝜋𝑡+1 +

(1 − 𝜁𝛽)(1 − 𝜁)

(1 + 𝛽𝜄)𝜁
(𝑐𝑡 + 𝜈𝑙𝑦𝑡) 

𝑦𝑡 = 𝑐𝑡 + 𝑔𝑡 

𝑅𝑡 = 𝜌𝑅𝑅𝑡−1 + (1 − 𝜌𝑅)(𝜓1𝜋𝑡 + 𝜓2(𝑦𝑡 − 𝑦𝑡−1 + 𝑧𝑡)) + 𝜎𝑅𝑒𝑡
𝑅 

𝑧𝑡 = −𝜑𝑧𝑧𝑡−1 + 𝜎𝑧𝑒𝑡
𝑧 

𝑔𝑡 = 𝜌𝑔𝑔𝑡−1 + 𝜎𝑔𝑒𝑡
𝑔

 

                                                                            
22 Parameters for which there are many stable solutions or there is no stable solution are excluded. 
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𝑑𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 + 𝑧𝑡 

where 𝑦𝑡, 𝑐𝑡, 𝑔𝑡, 𝜋𝑡, 𝑅𝑡, 𝑧𝑡, 𝑑𝑦𝑡 are variables that correspond to deviations from the steady state of 

output, consumption, exogenous process responsible for the share of government consumption, 

inflation, interest rate, exogenous technological process and GDP growth, 𝑒𝑡
𝑅 , 𝑒𝑡

𝑧 , 𝑒𝑡
𝑔

 are monetary 

policy, technology and government consumption shocks. 

Observation equations: 

The observation equations have the form: 

𝑜𝑏𝑠𝑡 = [

𝑑𝑦𝑡
𝑜𝑏𝑠

𝜋𝑡
𝑜𝑏𝑠

𝑅𝑡
𝑜𝑏𝑠

] = [

100 𝑙𝑜𝑔 𝛾
100 𝑙𝑜𝑔 𝜋∗

100(𝑙𝑜𝑔 𝛾 + 𝑙𝑜𝑔 𝜋∗ − 𝑙𝑜𝑔 𝛽)
] + [

100 𝑑𝑦𝑡
100 𝜋𝑡
100 𝑅𝑡

] 

where 𝑑𝑦𝑡
𝑜𝑏𝑠 is quarterly real GDP growth, 𝜋𝑡

𝑜𝑏𝑠 is quarterly price growth and 𝑅𝑡
𝑜𝑏𝑠 is interest rate in 

quarterly terms. 

С2. Architecture and learning algorithm 

Algorithm С1. Pretraining stochastic volatility DSGE model (𝑁𝑝𝑟𝑒𝑠𝑖𝑚 = 1 000 000, 

𝐵 =100, 𝑁𝑠𝑖𝑚 = 500 000, 𝑇𝑙𝑏 = 180, 𝑇𝑢𝑏 = 200, 𝑤 = 1, 𝑐 = 10−30) 

Set 𝑛𝑝𝑟𝑒𝑠𝑖𝑚 = 0, 𝜃 = {}, 𝐴 = {}, 𝐵 = {}. 

While 𝑛𝑝𝑟𝑒𝑠𝑖𝑚 < 𝑁𝑝𝑟𝑒𝑠𝑖𝑚: 

1. Draw 𝜃𝑛𝑝𝑟𝑒𝑠𝑖𝑚  from prior. 

2. Solve DSGE model23. 

3. If solution is stable24 append 𝜃𝑛𝑝𝑟𝑒𝑠𝑖𝑚 , 𝐴𝑛𝑝𝑟𝑒𝑠𝑖𝑚 , 𝐵𝑛𝑝𝑟𝑒𝑠𝑖𝑚  in 𝜃, 𝐴, 𝐵 and increment 𝑛𝑝𝑟𝑒𝑠𝑖𝑚 

by 1. 

For 𝑛 = 1,… ,𝑁𝑠𝑖𝑚: 

1. Draw 𝑇𝑛 from uniform discrete distribution 𝑇~𝑈(𝑇𝑙𝑏 , 𝑇𝑢𝑏). 

2. Simulate 𝑛𝑡ℎ batch: 

For 𝑏 = 1,… , 𝐵: 

2.a. Draw {𝜃𝑏 , 𝐴𝑏 , 𝐵𝑏} uniformly from {𝜃, 𝐴, 𝐵} and 𝜎𝑔
𝑆𝑉,𝑏 , 𝜎𝑧

𝑆𝑉,𝑏 , 𝜎𝑅
𝑆𝑉,𝑏 , 𝜌𝑔

𝑆𝑉,𝑏 , 

                                                                            
23 Anderson and Moore (1985) algorithm is applied. 
24 In our case, there is almost no non-unique stable or unstable solutions. See Lueckmann et al. (2017) as a 
one of examples how to deal with situations where certain regions of the parameter space are implausible. 
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𝜌𝑧
𝑆𝑉,𝑏 , 𝜌𝑅

𝑆𝑉,𝑏
 from prior. 

2.b. Draw 𝑆𝑉𝑏 = {𝑆𝑉1
𝑏 , … , 𝑆𝑉𝑇𝑛

𝑏 }, 𝑠𝑏 = {𝑠1
𝑏 , … , 𝑠𝑇𝑛

𝑏 } and �̃�𝑏 = {{𝑙𝑜𝑔(𝑐 +

|𝑒1
𝑅,𝑏|) , 𝑙𝑜𝑔(𝑐 + |𝑒1

𝑧,𝑏|) , 𝑙𝑜𝑔(𝑐 + |𝑒1
𝑔,𝑏
|) }, … , {{𝑙𝑜𝑔(𝑐 + |𝑒𝑇𝑛

𝑅,𝑏|) , 𝑙𝑜𝑔(𝑐 +

|𝑒𝑇𝑛
𝑧,𝑏|) , 𝑙𝑜𝑔(𝑐 + |𝑒𝑇𝑛

𝑔,𝑏
|) }}} conditioned on draw from 2a. 

2.c. Draw 𝑜𝑏𝑠𝑏 = {𝑜𝑏𝑠1
𝑏 , … , 𝑜𝑏𝑠𝑇𝑛

𝑏 } conditioned on 𝑆𝑉𝑏, 𝑠𝑏 and 𝜃𝑏. 

𝑆𝑉𝑛
𝑏𝑎𝑡𝑐ℎ = {{𝑆𝑉1, 𝑜𝑏𝑠1}, … , {𝑆𝑉𝐵, 𝑜𝑏𝑠𝐵}} 

3. Compute loss using architecture illustrated in Figure C1: 

𝐿𝑛 = −
1

3𝐵𝑇𝑛
∑∑ ∑ (𝑙𝑜𝑔 𝑝 (𝑆𝑉𝑡

𝑖,𝑏|𝑚𝑡,𝑖
𝑆𝑉(𝑜𝑏𝑠𝑏 , 𝜑), 𝜎𝑡,𝑖

𝑆𝑉(𝑜𝑏𝑠𝑏 , 𝜑))

𝑖∈{𝑔,𝑧,𝑅}

𝑇𝑛

𝑡=1

𝐵

𝑏=1

+ 𝑤 𝑙𝑜𝑔 𝑝 (�̃�𝑡
𝑖,𝑏|𝑚𝑡,𝑖

𝑒 (𝑜𝑏𝑠𝑏 , 𝜑), 𝜎𝑡,𝑖
𝑒 (𝑜𝑏𝑠𝑏 , 𝜑))) 

4. Make an optimization step with respect to 𝜑 using the ADAM algorithm. 

The learning rate, 𝜀𝑛, for the ADAM algorithm has the following schedule: 

𝜀𝑛 =

{
 
 

 
 

10−3, 𝑖𝑓 𝑛 < 3 × 104

10−4, 𝑖𝑓 3 × 104 ≤ 𝑛 < 105

10−5, 𝑖𝑓 105 ≤ 𝑛 < 2 × 105

10−6, 𝑖𝑓 2 × 105 ≤ 𝑛 < 3.5 × 105

3 × 10−7, 𝑖𝑓 𝑛 ≥ 3.5 × 105

 

 

С3. Alternative algorithm for stochastic volatility DSGE model 

Algorithm C1 is compared with an adaptive MCMC algorithm similar to that proposed by 

Justiniano and Primiceri (2008) and Diebold, Schorfheide and Shin (2017). The key difference is the 

replacement of Gibbs sampling step for sampling parameters of stochastic volatilities by Random 

Walk Metropolis-Hastings step (with marginalized states). 

Algorithm C2. Adaptive MCMC algorithm for stochastic volatility DSGE model 

(𝑁𝑠𝑖𝑚 = 100 000, 𝑐 = 1.5, 𝛴0
𝜃 = 0.1𝐼, 𝛴0

𝜃𝑆𝑉 = 0.1𝐼) 

For 𝑛 = 1,… ,𝑁𝑠𝑖𝑚: 

1. Draw parameters 𝜃 using Random Walk Metropolis-Hastings algorithm with adaptive 

proposal: 
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Figure С1. Neural network architecture for calculating mean and standard deviation in the 

SV-DSGE model 
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𝑞(𝜃′|𝜃𝑛−1) = 0.95𝑁 (𝜃
𝑛−1,

𝑐2

15
𝛴𝑛−1
𝜃 ) + 0.05𝑁 (𝜃𝑛−1,

0.012

15
𝐼) 

and acceptance rate: 

𝑎𝑟𝑛 = min(
𝑝(𝑜𝑏𝑠1, … , 𝑜𝑏𝑠𝑇|𝑆𝑉1

𝑛−1, … , 𝑆𝑉𝑇
𝑛−1, 𝜃′ )𝑝(𝜃′)

𝑝(𝑜𝑏𝑠1, … , 𝑜𝑏𝑠𝑇|𝑆𝑉1
𝑛−1, … , 𝑆𝑉𝑇

𝑛−1 , 𝜃𝑛−1)𝑝(𝜃𝑛−1)
, 1) 

2. Draw errors 𝑒1, … , 𝑒𝑇: 

𝑒1
𝑛, … , 𝑒𝑇

𝑛~𝑝(𝑒1, … , 𝑒𝑇|𝑜𝑏𝑠1, … , 𝑜𝑏𝑠𝑇 , 𝑆𝑉1
𝑛−1, … , 𝑆𝑉𝑇

𝑛−1, 𝜃𝑛) 

3. For 𝑡 = 1,… , 𝑇 draw discrete approximation to chi-squared distribution: 

𝑧𝑡
𝑖,𝑛~𝑝(𝑧𝑡

𝑖|𝑆𝑉1
𝑛−1, … , 𝑆𝑉𝑇

𝑛−1, 𝑒1
𝑛, … , 𝑒𝑇

𝑛),     𝑖 ∈ {𝑔, 𝑧, 𝑅}  

4. Draw parameters 𝜃𝑆𝑉 = {𝜎𝑔
𝑆𝑉 , 𝜎𝑧

𝑆𝑉 , 𝜎𝑅
𝑆𝑉 , 𝜌𝑔

𝑆𝑉 , 𝜌𝑧
𝑆𝑉 , 𝜌𝑅

𝑆𝑉} using Random Walk Metropolis-

Hastings algorithm with adaptive proposal: 

𝑞(𝜃𝑆𝑉′|𝜃𝑛−1
𝑆𝑉 ) = 0.95𝑁 (𝜃𝑆𝑉,𝑛−1,

𝑐2

6
𝛴𝑛−1
𝜃𝑆𝑉) + 0.05𝑁 (𝜃𝑆𝑉,𝑛−1,

0.012

6
𝐼) 

and acceptance rate: 

𝑎𝑟𝑛 = min(
𝑝(𝑒1

𝑛, … , 𝑒𝑇
𝑛|𝑧1

𝑛, … , 𝑧𝑇
𝑛, 𝜃𝑆𝑉′ )𝑝(𝜃𝑆𝑉′)

𝑝(𝑒1
𝑛, … , 𝑒𝑇

𝑛|𝑧1
𝑛, … , 𝑧𝑇

𝑛 , 𝜃𝑆𝑉,𝑛−1)𝑝(𝜃𝑆𝑉,𝑛−1)
, 1) 

5. Draw stochastic volatility: 

𝑆𝑉1
𝑛, … , 𝑆𝑉𝑇

𝑛~𝑝(𝑆𝑉1, … , 𝑆𝑉𝑇|𝑧1
𝑛, … , 𝑧𝑇

𝑛, 𝑒1, … , 𝑒𝑇 , 𝜃
𝑆𝑉,𝑛) 

 

 

Appendix D. Seasonal adjustment with structural breaks in seasonality 

The data generation process is not directly specified here, unlike in previous models. Instead, 

we describe the data generation procedure: 

Algorithm D1. Data generator with breaks in seasonality (𝑇𝑙𝑏 = 40, 𝑇𝑢𝑏 = 80, 𝑇𝑝𝑒𝑟𝑖𝑜𝑑 =

4, 𝐵 = 100) 

1. Draw 𝑇𝑛 from uniform discrete distribution 𝑇~𝑈(𝑇𝑙𝑏 , 𝑇𝑢𝑏). 

2. Simulate batch components: 

For 𝑏 = 1,… , 𝐵: 

2.a. Generate non-seasonal component 𝑁𝑆𝑏: 

𝑒𝑡
𝑏~𝑆𝑡𝑢𝑑𝑒𝑛𝑡(0, 1, 3 + |𝜂𝑡|),          𝑡 = −199,…𝑇𝑛 

𝜂𝑡~𝑁(0,3),          𝑡 = −199,…𝑇𝑛 
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𝑒𝑡
𝑠ℎ𝑖𝑓𝑡,𝑏

~𝑁(0,20)𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑖(0.01),          𝑡 = −196, …𝑇𝑛 

𝜌𝐴𝑅,1
𝑏 , 𝜌𝐴𝑅,2

𝑏 , 𝜌𝐴𝑅,3
𝑏 , 𝜌𝑀𝐴,1

𝑏 , 𝜌𝑀𝐴,2
𝑏 , 𝜌𝑀𝐴,3

𝑏 ~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑖(0.5)𝑈[−0.5,0.98] 

𝜀𝑡 = 𝑒𝑡
𝑏 + (𝜌𝑀𝐴,1

𝑏 + 𝜌𝑀𝐴,2
𝑏 + 𝜌𝑀𝐴,3

𝑏 )𝑒𝑡−1
𝑏 + (𝜌𝑀𝐴,1

𝑏 𝜌𝑀𝐴,2
𝑏 + 𝜌𝑀𝐴,2

𝑏 𝜌𝑀𝐴,3
𝑏 + 𝜌𝑀𝐴,1

𝑏 𝜌𝑀𝐴,3
𝑏 )𝑒𝑡−2

𝑏

+ 𝜌𝑀𝐴,1
𝑏 𝜌𝑀𝐴,2

𝑏 𝜌𝑀𝐴,3
𝑏 𝑒𝑡−3

𝑏 + 𝑒𝑡
𝑠ℎ𝑖𝑓𝑡,𝑏

,          𝑡 = −196,…𝑇𝑛 

𝑥𝑡
𝑏 = (𝜌𝐴𝑅,1

𝑏 + 𝜌𝐴𝑅,2
𝑏 + 𝜌𝐴𝑅,3

𝑏 )𝑥𝑡−1
𝑏 − (𝜌𝐴𝑅,1

𝑏 𝜌𝐴𝑅,2
𝑏 + 𝜌𝐴𝑅,2

𝑏 𝜌𝐴𝑅,3
𝑏 + 𝜌𝐴𝑅,1

𝑏 𝜌𝐴𝑅,3
𝑏 )𝑥𝑡−2

𝑏

+ 𝜌𝐴𝑅,1
𝑏 𝜌𝐴𝑅,2

𝑏 𝜌𝐴𝑅,3
𝑏 𝑥𝑡−3

𝑏 + 𝜀𝑡,          𝑡 = −196,…𝑇𝑛 

𝑥−199
𝑏 , 𝑥−198

𝑏 , 𝑥−197
𝑏 = 0 

𝑐𝑏~𝑁(0,0.005), 𝑠𝑐𝑎𝑙𝑒𝑏~𝑁 (0,
0.007

𝑠𝑡𝑑(𝑥𝑏)
) 

𝑁𝑆∗𝑏 = {𝑐𝑏 + 𝑠𝑐𝑎𝑙𝑒𝑏𝑥−199, … , 𝑐
𝑏 + 𝑠𝑐𝑎𝑙𝑒𝑏𝑥𝑇𝑛} 

𝐼𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑,𝑏~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑖(0.5) 

𝑁𝑆𝑏 = 𝐼𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑,𝑏𝑐𝑢𝑚𝑠𝑢𝑚(𝑁𝑆∗𝑏) + (1 − 𝐼𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑,𝑏)𝑁𝑆∗𝑏 

2.b. Generate seasonal component 𝑆𝑏: 

𝜎𝑏~𝑁 (0,
0.2

√40
 ) 

𝐼𝑡
𝑠ℎ𝑖𝑓𝑡,𝑏

~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑖(0.01),          𝑡 = −199,…𝑇𝑛 

𝑧𝑡
𝑏 = 𝐼𝑡−3

𝑠ℎ𝑖𝑓𝑡,𝑏
𝐼𝑡−2
𝑠ℎ𝑖𝑓𝑡,𝑏

𝐼𝑡−1
𝑠ℎ𝑖𝑓𝑡,𝑏

𝐼𝑡
𝑠ℎ𝑖𝑓𝑡,𝑏

,          𝑡 = −196,…𝑇𝑛 

𝑒𝑡
𝑆,𝑏~𝑁(0,1),          𝑡 = −196,…𝑇𝑛 

𝑠−199
𝑏 , 𝑠−198

𝑏 , 𝑠−197
𝑏 ~𝑁(0,1) 

𝑠𝑡
𝑏 = −(1 − 𝑧𝑡

𝑏)(𝑠𝑡−1
𝑏 + 𝑠𝑡−2

𝑏 + 𝑠𝑡−3
𝑏 + 𝜎𝑏𝑒𝑡

𝑆,𝑏) + 𝑧𝑡
𝑏𝑒𝑡

𝑆,𝑏
 

𝑠𝑐𝑎𝑙𝑒𝑆,𝑏~𝑁(0, 3𝑠𝑡𝑑(𝑁𝑆∗𝑏)) 

𝑆𝑏 = {𝑠𝑐𝑎𝑙𝑒𝑆,𝑏𝑠−199
𝑏 , … , 𝑠𝑐𝑎𝑙𝑒𝑆,𝑏𝑠𝑇𝑛

𝑏 } 

3. Create batch of size 2𝐵: 

For 𝑏 = 1,… , 𝐵: 

𝑦∗𝑏 = 𝑆𝑏 + 𝑁𝑆𝑏 
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𝑦𝑏 = {
𝑦1
𝑏 −𝑚𝑒𝑎𝑛(𝑦∗𝑏)

𝑠𝑡𝑑(𝑦∗𝑏)
, … ,

𝑦𝑇
𝑏 −𝑚𝑒𝑎𝑛(𝑦∗𝑏)

𝑠𝑡𝑑(𝑦∗𝑏)
} 

𝑦𝐵+𝑏 = {
𝑦𝑇
𝑏 −𝑚𝑒𝑎𝑛(𝑦∗𝑏)

𝑠𝑡𝑑(𝑦∗𝑏)
, … ,

𝑦1
𝑏 −𝑚𝑒𝑎𝑛(𝑦∗𝑏)

𝑠𝑡𝑑(𝑦∗𝑏)
} 

𝑠𝑎𝑏 = {
𝑁𝑆1

𝑏 −𝑚𝑒𝑎𝑛(𝑦∗𝑏)

𝑠𝑡𝑑(𝑦∗𝑏)
, … ,

𝑁𝑆𝑇
𝑏 −𝑚𝑒𝑎𝑛(𝑦∗𝑏)

𝑠𝑡𝑑(𝑦∗𝑏)
} 

𝑠𝑎𝐵+𝑏 = {
𝑁𝑆𝑇

𝑏 −𝑚𝑒𝑎𝑛(𝑦∗𝑏)

𝑠𝑡𝑑(𝑦∗𝑏)
, … ,

𝑁𝑆1
𝑏 −𝑚𝑒𝑎𝑛(𝑦∗𝑏)

𝑠𝑡𝑑(𝑦∗𝑏)
} 

  𝑦 = {𝑦1, … , 𝑦2𝐵},         𝑠𝑎 = {𝑠𝑎1, … , 𝑠𝑎2𝐵} 

The neural network estimation algorithm approximating the mean and standard deviation of 

the posterior distribution is similar to those described for other models. 

Algorithm D2. Pretraining seasonal adjustment with structural breaks in seasonality 

(𝑁𝑠𝑖𝑚 = 100 000) 

For 𝑛 = 1,… ,𝑁𝑠𝑖𝑚: 

1. Simulate 𝑛𝑡ℎ batch using Algorithm D1: 

𝑠𝑎𝑛
𝑏𝑎𝑡𝑐ℎ = {{𝑠𝑎1, 𝑦1},… , {𝑠𝑎2𝐵 , 𝑦2𝐵}} 

2. Compute per state loss using architecture illustrated in Figure D1: 

𝐿𝑛 = −
1

2𝐵𝑇𝑛
∑∑𝑙𝑜𝑔 𝑝 (𝑠𝑎𝑡

𝑏|𝑚𝑡(𝑦
𝑏 , 𝜑), 𝜎𝑡(𝑦

𝑏 , 𝜑))

𝑇𝑛

𝑡=1

2𝐵

𝑏=1

 

3. Make an optimization step with respect to 𝜑 using the ADAM algorithm. 

The schedule for the ADAM algorithm is defined as: 

𝜀𝑛 = {

10−3, 𝑖𝑓 𝑛 < 1.5 × 104

10−4, 𝑖𝑓 1.5 × 104 ≤ 𝑛 < 5 × 104

10−5, 𝑖𝑓 𝑛 ≥ 5 × 104
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Figure D1. Neural network architecture for calculating mean and standard deviation in the 

SA model 

 


