Macroprudential Policy for Internal Financial Dollarization

Aleksei Oskolkov
University of Chicago
Department of Economics
aoskolkov@uchicago.edu

Marcos Sorá
University of Chicago
Department of Economics
soramarcos@uchicago.edu

October 18, 2022
macroprudential policy and foreign currency

Figure: New policies enacted

motivation

- Macroprudential policy tightening related to foreign currency between 1990 and 2018:
- 2% of all tightening episodes in advanced economies
- 11% of all tightening episodes in emerging markets

motivation

- Macroprudential policy tightening related to foreign currency between 1990 and 2018:
- 2\% of all tightening episodes in advanced economies
- 11% of all tightening episodes in emerging markets
- Rationale for these policies: the logic of cross-border borrowing
- when capital decides to leave the country it will induce a depreciation of the exchange rate that borrowers do not internalize

motivation

- Macroprudential policy tightening related to foreign currency between 1990 and 2018:
- 2% of all tightening episodes in advanced economies
- 11% of all tightening episodes in emerging markets
- Rationale for these policies: the logic of cross-border borrowing
- when capital decides to leave the country it will induce a depreciation of the exchange rate that borrowers do not internalize
- But cross-border and domestic borrowing in foreign currency are not identical
- Christiano et al (2021) find that in the median country, 90% of firms' foreign currency borrowing is provided domestically

[^0]
what we do

Focus on environment where dollar debt of firms comes from dollar savings of households

- depreciation increases debt burden, reduces output and wages
- households use dollar assets as insurance

what we do

Focus on environment where dollar debt of firms comes from dollar savings of households

- depreciation increases debt burden, reduces output and wages
- households use dollar assets as insurance

Cost-benefit analysis of intervention that limits financial dollarization:

- trading costs of dollar debt on balance sheets vs insurance benefits of dollar savings
- account for amplification (depreciation \rightarrow drop in output \rightarrow trade balance problem $\rightarrow \ldots$)

what we do

Focus on environment where dollar debt of firms comes from dollar savings of households

- depreciation increases debt burden, reduces output and wages
- households use dollar assets as insurance

Cost-benefit analysis of intervention that limits financial dollarization:

- trading costs of dollar debt on balance sheets vs insurance benefits of dollar savings
- account for amplification (depreciation \rightarrow drop in output \rightarrow trade balance problem \rightarrow...)

Show that costs of limiting dollarization might be lower than expected

- if dollar savings of households partly create the depreciation they are used against

Show that macroprudential policy starts a virtuous circle

- in a more stable economy (less dollar debt) households demand less of dollar assets

workers (savers)

In period $t \in\{0,1\}$ work, save, consume, receive endowment of non-tradables $y_{t}^{N, w}$

workers (savers)

In period $t \in\{0,1\}$ work, save, consume, receive endowment of non-tradables $y_{t}^{N, w}$ Budget constraint:

$$
\begin{equation*}
\overbrace{q^{T} b^{T}+p_{0} q^{N} b^{N}}^{\text {saving }}+\overbrace{p_{0} c_{0}^{N, w}+c_{0}^{T, w}}^{\text {consumption }} \leq w_{0} I_{0}+\overbrace{p_{0} y_{0}^{N, w}}^{\text {endowment }}+T^{w} \tag{1}
\end{equation*}
$$

workers (savers)

In period $t \in\{0,1\}$ work, save, consume, receive endowment of non-tradables $y_{t}^{N, w}$ Budget constraint:

$$
\begin{align*}
& \overbrace{q^{T} b^{T}+p_{0} q^{N} b^{N}}^{\text {saving }}+\overbrace{p_{0} c_{0}^{N, w}+c_{0}^{T, w}}^{\text {consumption }} \leq w_{0} I_{0}+\overbrace{p_{0} y_{0}^{N, w}}^{\text {endowment }}+T^{w} \tag{1}\\
& \underbrace{p_{1} c_{1}^{N, w}+c_{1}^{T, w}}_{\text {consumption }} \leq w_{1} I_{1}+\underbrace{p_{1} y_{1}^{N, w}}_{\text {endowment }}+\underbrace{b^{T}+p_{1} b^{N}}_{\text {assets }}
\end{align*}
$$

workers (savers)

In period $t \in\{0,1\}$ work, save, consume, receive endowment of non-tradables $y_{t}^{N, w}$ Budget constraint:

$$
\begin{align*}
& \overbrace{q^{T} b^{T}+p_{0} q^{N} b^{N}}^{\text {saving }}+ \overbrace{p_{0} c_{0}^{N, w}+c_{0}^{T, w}}^{\text {consumption }} \leq w_{0} I_{0}+\overbrace{p_{0} y_{0}^{N, w}}^{\text {endowment }}+T^{w} \tag{1}\\
& \underbrace{p_{1} c_{1}^{N, w}+c_{1}^{T, w}}_{\text {consumption }} \leq w_{1} I_{1}+\underbrace{p_{1} y_{1}^{N, w}}_{\text {endowment }}+\underbrace{b^{T}+p_{1} b^{N}}_{\text {assets }} \tag{2}
\end{align*}
$$

Note:

- $\left\{p_{0}, p_{1}\right\}$ are relative prices of non-tradables (exchange rate)
- $\left\{w_{0}, w_{1}\right\}$ are wages
- $\left\{b^{T}, b^{N}\right\}$ is saving in tradables and non-tradables at prices $\left\{q^{T}, p_{0} q^{N}\right\}$
- T^{w} is tax rebate
firms (borrowers)
At $t=\{0,1\}$, use two inputs (z_{t} units of tradables and I_{t} units of labor) to produce $\eta_{t} f\left(z_{t}, l_{t}\right)$

firms (borrowers)

At $t=\{0,1\}$, use two inputs (z_{t} units of tradables and I_{t} units of labor) to produce $\eta_{t} f\left(z_{t}, l_{t}\right)$ At $t=1$:

- pre-fund a fraction θ of their input use z_{1} subject to a borrowing constraint
- owe $p_{1} b^{N}$ and b^{T} to households, \tilde{b} to foreign investors

$$
\begin{equation*}
\theta z_{1}+\tilde{b}+b^{T}+p_{1} b^{N} \leq p_{1} \bar{b} \tag{3}
\end{equation*}
$$

firms (borrowers)

At $t=\{0,1\}$, use two inputs (z_{t} units of tradables and I_{t} units of labor) to produce $\eta_{t} f\left(z_{t}, l_{t}\right)$ At $t=1$:

- pre-fund a fraction θ of their input use z_{1} subject to a borrowing constraint
- owe $p_{1} b^{N}$ and b^{T} to households, \tilde{b} to foreign investors

$$
\begin{equation*}
\theta z_{1}+\tilde{b}+b^{T}+p_{1} b^{N} \leq p_{1} \bar{b} \tag{3}
\end{equation*}
$$

Budget constraint:

$$
\begin{align*}
\overbrace{p_{0} c_{0}^{N, e}+c_{0}^{T, e}}^{\text {consumption }} & \leq \overbrace{\eta_{0} f\left(z_{0}, l_{0}\right)-w_{0} l_{0}-z_{0}}^{\text {profits }} \tag{4}\\
& +(1-\tilde{\tau}) \tilde{q} \tilde{b}+\left(1-\tau^{T}\right) q^{T} b^{T}+\left(1-\tau^{N}\right) p_{0} q^{N} b^{N}+T^{e}
\end{align*}
$$

firms (borrowers)

At $t=\{0,1\}$, use two inputs (z_{t} units of tradables and I_{t} units of labor) to produce $\eta_{t} f\left(z_{t}, l_{t}\right)$ At $t=1$:

- pre-fund a fraction θ of their input use z_{1} subject to a borrowing constraint
- owe $p_{1} b^{N}$ and b^{T} to households, \tilde{b} to foreign investors

$$
\begin{equation*}
\theta z_{1}+\tilde{b}+b^{T}+p_{1} b^{N} \leq p_{1} \bar{b} \tag{3}
\end{equation*}
$$

Budget constraint:

$$
\begin{align*}
\overbrace{p_{0} c_{0}^{N, e}+c_{0}^{T, e}}^{\text {consumption }} & \leq \overbrace{\eta_{0} f\left(z_{0}, l_{0}\right)-w_{0} l_{0}-z_{0}}^{\text {profits }} \tag{4}\\
& +(1-\tilde{\tau}) \tilde{q} \tilde{b}+\left(1-\tau^{T}\right) q^{T} b^{T}+\left(1-\tau^{N}\right) p_{0} q^{N} b^{N}+T^{e} \\
\underbrace{\tilde{b}+b^{T}+p_{1} b^{N}}_{\text {debt repayment }}+\underbrace{p_{1} c_{1}^{N, e}+c_{1}^{T, e}}_{\text {consumption }} & \leq \underbrace{\eta_{1} f\left(z_{1}, l_{1}\right)-w_{1} l_{1}-z_{1}}_{\text {profits }} \tag{5}
\end{align*}
$$

equilibrium characterization

Asset prices determined by Euler equations
Exchange rate and wage determination:

$$
\begin{align*}
& p_{1}=F\left(z_{1}\right), \text { increasing function } \tag{6}\\
& w_{1}=\text { marginal product of labor } \tag{7}
\end{align*}
$$

Not directly affected by debt $\left\{b^{T}, b^{N}\right\}$, indirectly via constraint

$$
\begin{equation*}
\theta z_{1} \leq p_{1}\left(\bar{b}-b^{N}\right)-b^{T}-\tilde{b} \tag{8}
\end{equation*}
$$

equilibrium characterization

Asset prices determined by Euler equations
Exchange rate and wage determination:

$$
\begin{align*}
& p_{1}=F\left(z_{1}\right), \text { increasing function } \tag{6}\\
& w_{1}=\text { marginal product of labor } \tag{7}
\end{align*}
$$

Not directly affected by debt $\left\{b^{T}, b^{N}\right\}$, indirectly via constraint

$$
\begin{equation*}
\theta z_{1} \leq p_{1}\left(\bar{b}-b^{N}\right)-b^{T}-\tilde{b} \tag{8}
\end{equation*}
$$

Spiral: p_{1} falls $\rightarrow z_{1}$ falls $\rightarrow p_{1}$ falls more...

costs and benefits of de-dollarization

Marginal effect of debt on worker's non-financial income:

$$
\mathcal{X}=\frac{\partial \text { price of non-tradables }}{\partial \text { debt }} \cdot \text { net sales of non-tradables }+\frac{\partial \text { wage }}{\partial \text { debt }}
$$

costs and benefits of de-dollarization

Marginal effect of debt on worker's non-financial income:

$$
\begin{equation*}
\mathcal{X}=\frac{\partial \text { price of non-tradables }}{\partial \text { debt }} \cdot \text { net sales of non-tradables }+\frac{\partial \text { wage }}{\partial \text { debt }} \tag{9}
\end{equation*}
$$

Consider a perturbation such that $\left\{b^{N}, b^{T}\right\}$ change but total expected payoff stays the same Denote by $s_{1}=p_{1} / p_{0}$ the appreciation of domestic currency, $\Delta_{U I P}=\mathbb{E}\left[s_{1}\right] q^{T}-q^{N}$

costs and benefits of de-dollarization

Marginal effect of debt on worker's non-financial income:

$$
\begin{equation*}
\mathcal{X}=\frac{\partial \text { price of non-tradables }}{\partial \text { debt }} \cdot \text { net sales of non-tradables }+\frac{\partial \text { wage }}{\partial \text { debt }} \tag{9}
\end{equation*}
$$

Consider a perturbation such that $\left\{b^{N}, b^{T}\right\}$ change but total expected payoff stays the same Denote by $s_{1}=p_{1} / p_{0}$ the appreciation of domestic currency, $\Delta_{U I P}=\mathbb{E}\left[s_{1}\right] q^{T}-q^{N}$

Result

Marginal benefit of replacing $\mathbb{E}\left[p_{1}\right]$ units of dollar debt with one unit of local currency debt is

$$
\begin{equation*}
\Delta=\underbrace{\operatorname{Cov}\left[\mathcal{X},-s_{1}\right]}_{\text {removing contagion }}-\underbrace{\left[\Delta_{U I P}-\hat{\Delta}_{U I P}\right]}_{\text {losing insurance }}+\text { revaluation } \tag{10}
\end{equation*}
$$

Here $\hat{\Delta}_{\text {UIP }}$ corresponds to zero taxes

numerical example

Calibrate the model to match emerging market targets:

- UIP violation of 3%, deposit dollarization of 30%
- probability of sudden stop of 10% per year, depreciation of 15% in case of a sudden stop

Table: Marginal benefits of intervention and optimal taxes with full weight on workers

	Δ	τ^{T}	τ^{N}	dep. dollarization	UIP violation
unregulated	$4.9 p p$	0	0	30.0%	$3.00 p p$
constr. eff.	0	9.3%	7.0%	14.3%	$3.13 p p$

numerical example

Calibrate the model to match emerging market targets:

- UIP violation of 3%, deposit dollarization of 30%
- probability of sudden stop of 10% per year, depreciation of 15% in case of a sudden stop

Table: Marginal benefits of intervention and optimal taxes with full weight on workers

	Δ	τ^{T}	τ^{N}	dep. dollarization	UIP violation
unregulated	$4.9 p p$	0	0	30.0%	$3.00 p p$
constr. eff.	0	9.3%	7.0%	14.3%	$3.13 p p$

Info content of UIP: when targeting UIP violation of $1.5 p p$

numerical example

Calibrate the model to match emerging market targets:

- UIP violation of 3%, deposit dollarization of 30%
- probability of sudden stop of 10% per year, depreciation of 15% in case of a sudden stop

Table: Marginal benefits of intervention and optimal taxes with full weight on workers

	Δ	τ^{T}	τ^{N}	dep. dollarization	UIP violation
unregulated	$4.9 p p$	0	0	30.0%	$3.00 p p$
constr. eff.	0	9.3%	7.0%	14.3%	$3.13 p p$

Info content of UIP: when targeting UIP violation of $1.5 p p$, optimal dollarization $14 \% \rightarrow 19 \%$

- demand for insurance lower, but dollar less heavy on balance sheets

numerical example

Calibrate the model to match emerging market targets:

- UIP violation of 3%, deposit dollarization of 30%
- probability of sudden stop of 10% per year, depreciation of 15% in case of a sudden stop

Table: Marginal benefits of intervention and optimal taxes with full weight on workers

	Δ	τ^{T}	τ^{N}	dep. dollarization	UIP violation
unregulated	$4.9 p p$	0	0	30.0%	$3.00 p p$
constr. eff.	0	9.3%	7.0%	14.3%	$3.13 p p$

Info content of UIP: when targeting UIP violation of 1.5 pp , optimal dollarization $14 \% \rightarrow 19 \%$

- demand for insurance lower, but dollar less heavy on balance sheets

Virtuous circle: suppose wage and exchange rate dynamics are as they were without taxes

numerical example

Calibrate the model to match emerging market targets:

- UIP violation of 3%, deposit dollarization of 30%
- probability of sudden stop of 10% per year, depreciation of 15% in case of a sudden stop

Table: Marginal benefits of intervention and optimal taxes with full weight on workers

	Δ	τ^{T}	τ^{N}	dep. dollarization	UIP violation
unregulated	$4.9 p p$	0	0	30.0%	$3.00 p p$
constr. eff.	0	9.3%	7.0%	14.3%	$3.13 p p$

Info content of UIP: when targeting UIP violation of 1.5 pp , optimal dollarization $14 \% \rightarrow 19 \%$

- demand for insurance lower, but dollar less heavy on balance sheets

Virtuous circle: suppose wage and exchange rate dynamics are as they were without taxes

- would need return on dollar $75 b p$ then in optimum lower to induce optimal holdings

conclusion and limitations

Takeaways:

- Insurance costs of de-dollarization are of second order
- Macroprudential policy launches a virtuous circle

conclusion and limitations

Takeaways:

- Insurance costs of de-dollarization are of second order
- Macroprudential policy launches a virtuous circle

Limitations:

- Intermediaries: most policies target banks, EMEs depend on bank financing etc
- Monetary policy: interaction with macroprudential policy is potentially important

Questions:

- Do dollar deposits come from firms as well? How much?
- Do banks/firms actively hedge? Spillovers from derivative markets?

notation for de-dollarization

$$
\begin{equation*}
\Delta=\frac{1}{p_{0} \mathcal{U}_{0}^{W}}\left(\frac{d \mathcal{W}}{d b^{N}}-\mathbb{E}\left[p_{1}\right] \frac{d \mathcal{W}}{d b^{T}}\right) \tag{11}
\end{equation*}
$$

Marginal utilities:

$$
\begin{array}{ll}
\mathcal{U}_{0}^{w}=\frac{\left(\mathcal{W}^{w}\right)^{\zeta}\left(\mathcal{C}_{0}^{w}\right)^{-\zeta}}{P_{0}} & \mathcal{U}_{1}^{w}=\beta^{w} \frac{\left(\mathcal{W}^{w}\right)^{\zeta}\left(\mathcal{C}_{1}^{w}\right)^{-\zeta}}{P_{1}}\left(\frac{\mathbb{K}\left[\mathcal{C}_{1}^{w}\right]}{\mathcal{C}_{1}^{w}}\right)^{\sigma-\zeta} \\
\mathcal{U}_{0}^{e}=\frac{1}{P_{0}} & \mathcal{U}_{1}^{e}=\beta^{e} \frac{1}{P_{1}} \tag{13}
\end{array}
$$

Λ^{w} is the pricing kernel of the workers: $\Lambda^{w}=\mathcal{U}_{1}^{w} / \mathcal{U}_{0}^{w}$ back

literature

Internal financial dollarization:

- Montamat 2020, Dalgic 2018, Bocola Lorenzoni 2020

This paper: study the normative side
Fisherian spirals and overborrowing:

- Korinek Mendoza 2014, Mendoza Smith 2006, Durdu Mendoza 2006, Mendoza Smith 2014, Mendoza 2010, Bianchi Mendoza 2011, Schmitt-Grohe Uribe 2017, Boz Mendoza 2014, Jeanne Korinek 2010b, Reyes-Heroles Tenorio 2020, Bianchi Mendoza 2018, Arellano Mendoza 2002, Mendoza 2005

This paper: introduce domestic saving in foreign currency
Quantifying externalities:

- Davila Korinek 2018, Hebert 2020

This paper: apply insights to internal financial dollarization

equilibrium

Fix endowments, a tax system $\mathcal{T}=\left\{\tau^{N}, \tau^{T}, \tilde{\tau}, T^{w}, T^{e}\right\}$, and the global interest rate \tilde{q} Equilibrium is a set of quantities $\left\{\left\{c_{t}^{N, w}, c_{t}^{T, w}, c_{t}^{N, e}, c_{t}^{T, e}, z_{t}\right\}_{t=0,1}, b^{T}, b^{N}, \tilde{b}\right\}$ and prices $\left\{q^{T}, q^{N},\left\{p_{t}, w_{t}\right\}_{t=0,1}\right\}$ such that

- consumption and borrowing decisions $\left\{\left\{c_{t}^{N, w}, c_{t}^{T, w}, c_{t}^{N, e}, c_{t}^{T, e}\right\}_{t=0,1}, b^{T}, b^{N}, \tilde{b}\right\}$ solve the problems of the agents
- traded input choices $\left\{z_{t}\right\}_{t=0,1}$ are optimal for the entrepreneurs
- the optimal choice of labor coincides with labor endowments $\left\{I_{t}\right\}_{t=0,1}$
- market for non-tradables clears internally: $c_{t}^{N, w}+c_{t}^{N, e}=y_{t}^{N, w}+y_{t}^{N, e}$ for $t=0,1$ Balance of payments (follows):

$$
\begin{equation*}
c_{1}^{N, w}+c_{1}^{N, e}=\eta_{1} f\left(z_{1}, l_{1}\right)-z_{1}+y_{1}^{T, w}+y_{1}^{T, w}-\tilde{b} \tag{14}
\end{equation*}
$$

Under conditions, can index equilibria by $\left\{b^{T}, b^{N}, \tilde{b}\right\}$ with taxes changing in the background back

two premia

- Occasionally binding borrowing constraint

$$
\begin{equation*}
\left(1-\tau^{T}\right) q^{T}=\beta^{e} \mathbb{E}[\frac{P_{0}}{P_{1}} \cdot(1+\underbrace{\theta^{-1} \max \left\{0, \eta_{1} f_{1}\left(z_{1}, l_{1}\right)-1\right\}}_{\text {unearned profits }})] \tag{15}
\end{equation*}
$$

two premia

- Occasionally binding borrowing constraint

$$
\begin{equation*}
\left(1-\tau^{T}\right) q^{T}=\beta^{e} \mathbb{E}[\frac{P_{0}}{P_{1}} \cdot(1+\underbrace{\theta^{-1} \max \left\{0, \eta_{1} f_{1}\left(z_{1}, l_{1}\right)-1\right\}}_{\text {unearned profits }})] \tag{15}
\end{equation*}
$$

- LC debt shrinks together with the borrowing limit, FC debt does not:

$$
\begin{equation*}
\left(1-\tau^{N}\right) q^{N}=\left(1-\tau^{T}\right) q^{T} \mathbb{E}\left[\frac{p_{1}}{p_{0}}\right]+\underbrace{\beta^{e} \mathbb{C}\left[\frac{P_{1}}{P_{0}} \cdot \frac{\eta_{1} f_{1}\left(z_{1}, l_{1}\right)-1+\theta}{\theta}, \frac{p_{1}}{p_{0}}\right]}_{\text {UIP violation }} \tag{16}
\end{equation*}
$$

Euler equations

$$
\begin{gather*}
q_{t}^{T}=\beta^{w} \mathbb{E}_{t}\left[\frac{P_{t}}{P_{t+1}}\left(\frac{c_{t}^{w}}{c_{t+1}^{w}}\right)^{\zeta}\left(\frac{\mathbb{K}_{t} \mathcal{V}_{t+1}^{w}}{\mathcal{V}_{t+1}^{w}}\right)^{\sigma-\zeta}\right] \tag{17}\\
q_{t}^{N}=\beta^{w} \mathbb{E}_{t}\left[\frac{P_{t}}{P_{t+1}}\left(\frac{c_{t}^{w}}{c_{t+1}^{w}}\right)^{\zeta}\left(\frac{\mathbb{K}_{t} \mathcal{V}_{t+1}^{w}}{\mathcal{V}_{t+1}^{w}}\right)^{\sigma-\zeta} \cdot \frac{p_{t+1}}{p_{t}}\right] \tag{18}\\
\left(1-\tau_{t}^{T}\right) q_{t}^{T}=\beta^{e} \mathbb{E}_{t}\left[\frac{P_{t}}{P_{t+1}}\left(1+\theta^{-1} \max \left\{0, \eta_{t+1} f_{1}\left(z_{t+1}, I_{t+1}\right)-1\right\}\right)\right] \tag{19}\\
\left(1-\tau_{t}^{N}\right) q_{t}^{N}=\beta^{e} \mathbb{E}_{t}\left[\frac{P_{t}}{P_{t+1}}\left(1+\theta^{-1} \max \left\{0, \eta_{t+1} f_{1}\left(z_{t+1}, I_{t+1}\right)-1\right\}\right) \cdot \frac{p_{t+1}}{p_{t}}\right] \tag{20}
\end{gather*}
$$

examples of macroprudential policies on FC instruments

- An example of a limit on FC lending from Romania: On September 26, 2005, the authorities introduced a limit on credit institutions' exposure to at most 300% of their equity (before deducting credit risk provisions) when granting foreign currency loans to unhedged borrowers, natural and legal persons.
- An example of a limit on FC positions from Indonesia: Thereafter from January 1, 2016, non-bank corporations holding external debt shall be required to hedge their foreign exchange against the rupiah with a ratio of 25\%, as announced in October 2014.

[^0]: some literature

