Banking Panic Risk and Macroeconomic Uncertainty Bank of Russia Workshop

Jakob Guldbæk Mikkelsen¹ Johannes Poeschl²

¹Financial Stability Danmarks Nationalbank

²Research Danmarks Nationalbank

October 2021

Financial crisis of 2008: Increase in Systemic Risk and Macroeconomic Uncertainty

Systemic risk and macroeconomic uncertainty are complicated concepts, and how they are connected is a priori unclear

Systemic risk and macroeconomic uncertainty are complicated concepts, and how they are connected is a priori unclear

Uses a DSGE model to study how **systemic risk** and **macroeconomic uncertainty** are connected

Systemic risk and macroeconomic uncertainty are complicated concepts, and how they are connected is a priori unclear

Uses a DSGE model to study how **systemic risk** and **macroeconomic uncertainty** are connected

Key model ingredients: Endogenous financial crises + uncertainty shocks

Systemic risk and macroeconomic uncertainty are complicated concepts, and how they are connected is a priori unclear

Uses a DSGE model to study how **systemic risk** and **macroeconomic uncertainty** are connected

Key model ingredients: Endogenous financial crises + uncertainty shocks

Novel feedback loop between systemic risk and macroeconomic uncertainty

Systemic risk and macroeconomic uncertainty are complicated concepts, and how they are connected is a priori unclear

Uses a DSGE model to study how **systemic risk** and **macroeconomic uncertainty** are connected

Key model ingredients: Endogenous financial crises + uncertainty shocks

Novel feedback loop between systemic risk and macroeconomic uncertainty

 Result 1: Finance to macro Possibility of financial crises → endogenously time-varying macroeconomic uncertainty

Systemic risk and macroeconomic uncertainty are complicated concepts, and how they are connected is a priori unclear

Uses a DSGE model to study how **systemic risk** and **macroeconomic uncertainty** are connected

Key model ingredients: Endogenous financial crises + uncertainty shocks

Novel feedback loop between systemic risk and macroeconomic uncertainty

- Result 1: Finance to macro Possibility of financial crises → endogenously time-varying macroeconomic uncertainty
- **Result 2: Macro to finance** Higher macroeconomic uncertainty reduces the likelihood of a financial crisis

Systemic risk and macroeconomic uncertainty are complicated concepts, and how they are connected is a priori unclear

Uses a DSGE model to study how **systemic risk** and **macroeconomic uncertainty** are connected

Key model ingredients: Endogenous financial crises + uncertainty shocks

Novel feedback loop between systemic risk and macroeconomic uncertainty

- Result 1: Finance to macro Possibility of financial crises → endogenously time-varying macroeconomic uncertainty
- **Result 2: Macro to finance** Higher macroeconomic uncertainty reduces the likelihood of a financial crisis

Novel general equilibrium benefit of macroprudential regulation

Systemic risk and macroeconomic uncertainty are complicated concepts, and how they are connected is a priori unclear

Uses a DSGE model to study how **systemic risk** and **macroeconomic uncertainty** are connected

Key model ingredients: Endogenous financial crises + uncertainty shocks

Novel feedback loop between systemic risk and macroeconomic uncertainty

- Result 1: Finance to macro Possibility of financial crises → endogenously time-varying macroeconomic uncertainty
- **Result 2: Macro to finance** Higher macroeconomic uncertainty reduces the likelihood of a financial crisis

Novel general equilibrium benefit of macroprudential regulation

• **Result 3:** A countercyclical capital buffer reduces systemic risk and thereby also macroeconomic uncertainty

Literature

Financial crises in dynamic macroeconomic models

He and Krishnamurthy (2012), Brunnermeier and Sannikov (2014), Gertler and Kiyotaki (2015), Boissay, Collard, and Smets (2016), Gertler, Kiyotaki, and Prestipino (2016), Gertler, Kiyotaki, and Prestipino (2019a), Ferrante (2018), Gertler et al. (2019b)

Literature

Financial crises in dynamic macroeconomic models He and Krishnamurthy (2012), Brunnermeier and Sannikov (2014), Gertler and Kiyotaki (2015), Boissay, Collard, and Smets (2016), Gertler, Kiyotaki, and Prestipino (2016), Gertler, Kiyotaki, and Prestipino (2019a), Ferrante (2018), Gertler et al. (2019b)

Uncertainty shocks, asset prices and business cycles Gourio (2012), Basu and Bundick (2017)

Literature

Financial crises in dynamic macroeconomic models He and Krishnamurthy (2012) Brunnermeier and Sannikov

He and Krishnamurthy (2012), Brunnermeier and Sannikov (2014), Gertler and Kiyotaki (2015), Boissay, Collard, and Smets (2016), Gertler, Kiyotaki, and Prestipino (2016), Gertler, Kiyotaki, and Prestipino (2019a), Ferrante (2018), Gertler et al. (2019b)

Uncertainty shocks, asset prices and business cycles Gourio (2012), Basu and Bundick (2017)

Macroprudential regulation of banks
 Gertler, Kiyotaki, and Queralto (2012), Christiano and Ikeda (2016),
 Begenau and Landvoigt (2018), Begenau (2019), Di Tella (2019)

2 Model

3 Event Study

4) Macroprudential Regulation

5 Conclusion

- Epstein-Zin preferences
- Consume, work, make loans to banks and firms, own banks, face a cost when lending to firms

- Epstein-Zin preferences
- Consume, work, make loans to banks and firms, own banks, face a cost when lending to firms

Banks Details

- Borrow from households, lend to firms
- Reinvest their net worth until they exit
- Borrowing limited by a moral hazard problem
- No seasoned equity issuance

- Epstein-Zin preferences
- Consume, work, make loans to banks and firms, own banks, face a cost when lending to firms

Banks Details

- Borrow from households, lend to firms
- Reinvest their net worth until they exit
- Borrowing limited by a moral hazard problem
- No seasoned equity issuance

Final goods producers Details

- Produce output using capital and labor subject to capital quality shocks with time-varying volatility
- Finance capital with loans from households and banks

- Epstein-Zin preferences
- Consume, work, make loans to banks and firms, own banks, face a cost when lending to firms

Banks Details

- Borrow from households, lend to firms
- Reinvest their net worth until they exit
- Borrowing limited by a moral hazard problem
- No seasoned equity issuance

Final goods producers Details

- Produce output using capital and labor subject to capital quality shocks with time-varying volatility
- Finance capital with loans from households and banks

Transform final goods into capital goods, quadratic investment adjustment cost

- Epstein-Zin preferences
- Consume, work, make loans to banks and firms, own banks, face a cost when lending to firms

Banks Details

- Borrow from households, lend to firms
- Reinvest their net worth until they exit
- Borrowing limited by a moral hazard problem
- No seasoned equity issuance

Final goods producers Details

- Produce output using capital and labor subject to capital quality shocks with time-varying volatility
- Finance capital with loans from households and banks

Transform final goods into capital goods, quadratic investment adjustment cost

Choose lending & borrowing to maximize the bank's equity value

$$V_t^B = \max_{a_{t+1}^B, d_{t+1}^B} \{ \mathbb{E}_t \quad \underbrace{\Lambda_{t,t+1}}_{\text{Household SDE}} \underbrace{(1 - \rho_{t+1})}_{1 - \text{Default prob}} \underbrace{\overline{V}_{t+1}^B}_{\text{Future back value}} \}$$
(1)

HOUSEHOLD SUF 1 -Delault prob. Future bank value

Choose lending & borrowing to maximize the bank's equity value

$$V_{t}^{B} = \max_{a_{t+1}^{B}, d_{t+1}^{B}} \{ \mathbb{E}_{t} \underbrace{\Lambda_{t,t+1}}_{\text{Household SDF 1-Default prob. Future bank value}} \underbrace{\overline{V}_{t+1}^{B}}_{\text{Future bank value}} \}$$
(1)

Balance sheet

$$\underbrace{Q_t a_{t+1}^B}_{\text{Total assets}} = \underbrace{d_{t+1}^B}_{\text{Debt}} + \underbrace{n_t^B}_{\text{Equity}}$$
(2)

Choose lending & borrowing to maximize the bank's equity value

$$V_t^B = \max_{a_{t+1}^B, d_{t+1}^B} \{ \mathbb{E}_t \quad \underbrace{\Lambda_{t,t+1}}_{\text{Household SDF 1-Default prob. Future bank value}} \underbrace{\bar{V}_{t+1}^B}_{\text{Future bank value}} \}$$
(1)

Balance sheet

$$\underbrace{Q_t a_{t+1}^B}_{\text{Total assets}} = \underbrace{d_{t+1}^B}_{\text{Debt}} + \underbrace{n_t^B}_{\text{Equity}}$$
(2)

Incentive constraint

$$\underbrace{\psi Q_t a_{t+1}^B}_{t+1} \leq V_t^B$$

Benefit from diverting assets (3)

Т

Choose lending & borrowing to maximize the bank's equity value

$$V_t^B = \max_{a_{t+1}^B, d_{t+1}^B} \{ \mathbb{E}_t \quad \underbrace{\Lambda_{t,t+1}}_{\text{Household SDF 1-Default prob. Future bank value}} \underbrace{\bar{V}_{t+1}^B}_{\text{Future bank value}} \}$$
(1)

Balance sheet

$$\underbrace{Q_t a_{t+1}^B}_{\text{btal assets}} = \underbrace{d_{t+1}^B}_{\text{Debt}} + \underbrace{n_t^B}_{\text{Equity}}$$
(2)

Incentive constraint

$$\underbrace{\psi Q_t a_{t+1}^B}_{\substack{\text{Benefit from} \\ \text{diverting assets}}} \leq V_t^B \tag{3}$$

Net Worth

$$\boldsymbol{n}_t^{\boldsymbol{B}} = \boldsymbol{R}_t^{\boldsymbol{A}} \boldsymbol{a}_t^{\boldsymbol{B}} - \boldsymbol{R}_t^{\boldsymbol{D}} \boldsymbol{d}_t^{\boldsymbol{B}}. \tag{4}$$

Bank Default

Rewritten incentive constraint:

$$d_{t+1}^B \le \Theta_t n_t^B \tag{5}$$

implies creditors will not lend if $n_t^B \leq 0$

Bank Default

Rewritten incentive constraint:

$$d_{t+1}^B \le \Theta_t n_t^B \tag{5}$$

implies creditors will not lend if $n_t^B \leq 0$

 $n_t^B < 0$: Bank does not have enough funds to repay liabilities **and** it cannot borrow or raise equity \rightarrow it must default.

Bank Default

Rewritten incentive constraint:

$$d_{t+1}^B \le \Theta_t n_t^B \tag{5}$$

implies creditors will not lend if $n_t^B \leq 0$

 $n_t^B < 0$: Bank does not have enough funds to repay liabilities **and** it cannot borrow or raise equity \rightarrow it must default.

Banks can be aggregated into a representative bank

Price of assets Q_t adjusts to clear the market for assets:

Price of assets Q_t adjusts to clear the market for assets:

Two possible equilibria:

Banks operate: assets are valued at normal prices Q_t

Price of assets Q_t adjusts to clear the market for assets:

Two possible equilibria:

- Banks operate: assets are valued at normal prices Q_t
- Banks do not operate (crisis equilibrium): assets are valued at fire-sale prices Q^{*}_t

Price of assets Q_t adjusts to clear the market for assets:

Two possible equilibria:

- Banks operate: assets are valued at normal prices Q_t
- Banks do not operate (crisis equilibrium): assets are valued at fire-sale prices Q^{*}_t

Return on assets:

$$\boldsymbol{R}_t^{\boldsymbol{A}} = \boldsymbol{r}_t^{\boldsymbol{A}} + (1 - \delta)\boldsymbol{Q}_t \tag{7}$$

Future net worth of incumbent banks:

$$\mathbf{n}_{t+1}^{B} = \begin{cases} n_{t+1}^{B} = \mathbf{R}_{t+1}^{A} a_{t+1}^{B} - R_{t+1}^{D} d_{t+1}^{B} & \text{If assets are valued at normal prices} \end{cases}$$
(8)

Future net worth of incumbent banks:

$$\mathbf{n}_{t+1}^{B} = \begin{cases} n_{t+1}^{B} = \mathbf{R}_{t+1}^{A} a_{t+1}^{B} - R_{t+1}^{D} d_{t+1}^{B} & \text{If assets are valued at normal prices} \\ n_{t+1}^{B*} = \mathbf{R}_{t+1}^{A*} a_{t+1}^{B} - R_{t+1}^{D} d_{t+1}^{B} & \text{If assets are valued at fire-sale prices} \\ \text{In general, } n_{t+1}^{B*} \le n_{t+1}^{B} \end{cases}$$
(8)

Future net worth of incumbent banks:

$$\mathbf{n}_{t+1}^{B} = \begin{cases} n_{t+1}^{B} = \mathbf{R}_{t+1}^{A} a_{t+1}^{B} - R_{t+1}^{D} d_{t+1}^{B} & \text{If assets are valued at normal prices} \\ n_{t+1}^{B*} = \mathbf{R}_{t+1}^{A*} a_{t+1}^{B} - R_{t+1}^{D} d_{t+1}^{B} & \text{If assets are valued at fire-sale prices} \\ \text{In general, } n_{t+1}^{B*} \le n_{t+1}^{B} \end{cases}$$
(8)

Financial crisis probability characterized by 3 zones:

$$p_{t+1} = \mathbb{E}_t \left[\underbrace{\mathbb{1}(n_{t+1}^B \leq 0)}_{\substack{\text{Default Zone}\\ \text{Banks always default}}} \right]$$

Future net worth of incumbent banks:

$$\mathbf{n}_{t+1}^{B} = \begin{cases} n_{t+1}^{B} = \mathbf{R}_{t+1}^{A} a_{t+1}^{B} - R_{t+1}^{D} d_{t+1}^{B} & \text{If assets are valued at normal prices} \\ n_{t+1}^{B*} = \mathbf{R}_{t+1}^{A*} a_{t+1}^{B} - R_{t+1}^{D} d_{t+1}^{B} & \text{If assets are valued at fire-sale prices} \\ \text{In general, } n_{t+1}^{B*} \le n_{t+1}^{B} \end{cases}$$
(8)

Financial crisis probability characterized by 3 zones:

$$p_{t+1} = \mathbb{E}_t \left[\underbrace{\mathbb{1}(n_{t+1}^B \leq 0)}_{\substack{\text{Default Zone}\\ \text{Banks always default}}} \right]$$

$$+\underbrace{1 - \mathbb{1}(n_{t+1}^{B*} > 0)}_{\text{Safe Zone}}$$

Future net worth of incumbent banks:

$$\mathbf{n}_{t+1}^{B} = \begin{cases} n_{t+1}^{B} = \mathbf{R}_{t+1}^{A} a_{t+1}^{B} - R_{t+1}^{D} d_{t+1}^{B} & \text{If assets are valued at normal prices} \\ n_{t+1}^{B*} = \mathbf{R}_{t+1}^{A*} a_{t+1}^{B} - R_{t+1}^{D} d_{t+1}^{B} & \text{If assets are valued at fire-sale prices} \\ \text{In general, } n_{t+1}^{B*} \le n_{t+1}^{B} \end{cases}$$
(8)

Financial crisis probability characterized by 3 zones:

$$p_{t+1} = \mathbb{E}_{t} \left[\underbrace{\mathbb{1}(n_{t+1}^{B} \leq \mathbf{0})}_{\text{Default Zone}} + p^{H} \underbrace{\mathbb{1}(n_{t+1}^{B} > \mathbf{0} \text{ and } n_{t+1}^{B*} \leq \mathbf{0})}_{\text{Crisis Zone}}_{\text{Banks always default}} + \underbrace{1 - \mathbb{1}(n_{t+1}^{B*} > \mathbf{0})}_{\text{Safe Zone}}_{\text{Banks never default}} \right]$$

Future net worth of incumbent banks:

$$\mathbf{n}_{t+1}^{B} = \begin{cases} n_{t+1}^{B} = \mathbf{R}_{t+1}^{A} a_{t+1}^{B} - R_{t+1}^{D} d_{t+1}^{B} & \text{If assets are valued at normal prices} \\ n_{t+1}^{B*} = \mathbf{R}_{t+1}^{A*} a_{t+1}^{B} - R_{t+1}^{D} d_{t+1}^{B} & \text{If assets are valued at fire-sale prices} \\ \text{In general, } n_{t+1}^{B*} \le n_{t+1}^{B} \end{cases}$$
(8)

Financial crisis probability characterized by 3 zones:

$$p_{t+1} = \mathbb{E}_{t} \left[\underbrace{\mathbb{1}(n_{t+1}^{B} \leq \mathbf{0})}_{\text{Default Zone}} + p^{H} \underbrace{\mathbb{1}(n_{t+1}^{B} > \mathbf{0} \text{ and } n_{t+1}^{B*} \leq \mathbf{0})}_{\text{Crisis Zone}}_{\text{Banks always default}} + \underbrace{1 - \mathbb{1}(n_{t+1}^{B*} > \mathbf{0})}_{\text{Safe Zone}}_{\text{Banks never default}} \right]$$

 p_{t+1} measures **endogenously time-varying** systemic risk

Asset return in t + 1:

$$\mathbf{R}_{t+1}^{A} = \begin{cases} \mathbf{R}_{t+1}^{A} & \text{with prob. } 1 - p_{t+1} \\ \mathbf{R}_{t+1}^{A*} & \text{with prob. } p_{t+1} \end{cases}$$

(9)

Asset return in t + 1:

$$\mathbf{R}_{t+1}^{A} = \begin{cases} \mathbf{R}_{t+1}^{A} & \text{with prob. } 1 - p_{t+1} \\ \mathbf{R}_{t+1}^{A*} & \text{with prob. } p_{t+1} \end{cases}$$

Uncertainty Index (VIX):

$$StDev_{t}(\mathbf{R}_{t+1}^{A}) = 400\sqrt{\mathbb{E}_{t}\left(\mathbf{R}_{t+1}^{A} - \mathbb{E}_{t}\mathbf{R}_{t+1}^{A}\right)^{2}}$$
(10)

(9)

Asset return in t + 1:

$$\mathbf{R}_{t+1}^{A} = \begin{cases} \mathbf{R}_{t+1}^{A} & \text{with prob. } 1 - p_{t+1} \\ \mathbf{R}_{t+1}^{A*} & \text{with prob. } p_{t+1} \end{cases}$$
(9)

Uncertainty Index (VIX):

$$StDev_t(\mathbf{R}_{t+1}^{A}) = 400\sqrt{\mathbb{E}_t \left(\mathbf{R}_{t+1}^{A} - \mathbb{E}_t \mathbf{R}_{t+1}^{A}\right)^2}$$
(10)

For p_{t+1} low, higher systemic risk increases macroeconomic uncertainty

Asset return in t + 1:

$$\mathbf{R}_{t+1}^{A} = \begin{cases} \mathbf{R}_{t+1}^{A} & \text{with prob. } 1 - p_{t+1} \\ \mathbf{R}_{t+1}^{A*} & \text{with prob. } p_{t+1} \end{cases}$$
(9)

Uncertainty Index (VIX):

$$StDev_t(\mathbf{R}_{t+1}^A) = 400\sqrt{\mathbb{E}_t \left(\mathbf{R}_{t+1}^A - \mathbb{E}_t \mathbf{R}_{t+1}^A\right)^2}$$
(10)

For p_{t+1} low, higher systemic risk increases macroeconomic uncertainty

Equivalent indices can be constructed for each endogenous variable

Endogenous Uncertainty in Response to Level Shocks

Macroeconomic uncertainty affects the economy through three channels:

Macroeconomic uncertainty affects the economy through three channels:

Precautionary savings channel

Household deposit FOC (abstracting from creditors' loss in default):

$$1 = \mathbb{E}_t \Lambda_{t,t+1} R_{t+1}^D.$$

- Higher uncertainty, lower deposit rate R^D_{t+1}
- Lowers financial crisis probability

Macroeconomic uncertainty affects the economy through three channels:

- Precautionary savings channel
- Oredit spread channel
 - Household risky asset FOC:

$$Q_t + f_t = \mathbb{E}_t \Lambda_{t,t+1} R_{t+1}^{\mathcal{A}}.$$

- Higher uncertainty, higher risky return $\mathbb{E}_t R_{t+1}^A$
- Lowers financial crisis probability

Macroeconomic uncertainty affects the economy through three channels:

- Precautionary savings channel
- Credit spread channel
- Bank leverage channel
 - Banks' incentive constraint:

$$\psi Q_t a_{t+1}^{\mathcal{B}} = \mathbb{E}_t \Lambda_{t,t+1} (1 - p_{t+1}) \overline{V}_{t+1}^{\mathcal{B}}$$

- Higher uncertainty, lower bank leverage
- Lowers financial crisis probability

Macroeconomic uncertainty affects the economy through three channels:

- Precautionary savings channel
- Credit spread channel
- Bank leverage channel

All three channels are contractionary, but **reduce** the probability of a financial crisis.

Lower Bank Run Probability in Response to Volatility Shocks

2 Mode

3 Event Study

Macroprudential Regulation

5 Conclusion

Event Study Approach

Gauge the model fit using an event study approach:

- Simulate the model for many periods
- Extract all financial crisis episodes from the simulation
- Ompute the average paths of variables around a financial crisis
- For each financial crisis, compute the counterfactual path given the same shocks if no crisis would have occured
- Solution For all of these counterfactual paths, compute again average paths

Advantage: Does not impose the shocks that lead to a financial crisis exogenously.

A Typical Banking Panic

A Typical Banking Panic

2 Model

3 Event Study

Conclusion

A Capital Requirement with a Countercyclical Buffer

Bank Leverage

$$\phi_t^B \equiv \frac{Q_t a_{t+1}^B}{n_t^B}$$

(11)

A Capital Requirement with a Countercyclical Buffer

Bank Leverage

$$\phi_t^B \equiv \frac{Q_t a_{t+1}^B}{n_t^B} \tag{11}$$

Leverage Constraint:

$$\phi_t^{\mathcal{B}} \le \bar{\phi}_t^{\mathcal{B}} \tag{12}$$

Model the leverage rule as in Gertler, Kiyotaki, and Prestipino (2019b)

$$\bar{\phi}_t^B = \bar{\phi}^B \mathbb{1}(n_t^B > n^B) \tag{13}$$

The Effects of the CCyB on a Boom-Bust Cycle

Conclusion

Novel feedback loop between systemic risk and macroeconomic uncertainty

- **Result 1: Finance to macro** Possibility of financial crises → endogenously time-varying macroeconomic uncertainty
- Result 2: Macro to finance Higher macroeconomic uncertainty reduces the likelihood of a financial crisis

Conclusion

Novel feedback loop between systemic risk and macroeconomic uncertainty

- **Result 1: Finance to macro** Possibility of financial crises → endogenously time-varying macroeconomic uncertainty
- Result 2: Macro to finance Higher macroeconomic uncertainty reduces the likelihood of a financial crisis

Novel general equilibrium benefit of macroprudential regulation

• **Result 3:** Countercyclical capital buffers reduces systemic risk and thereby also reduces macroeconomic uncertainty

Future Work: Optimal policy, more sophisticated policy rules

Appendix

Maximize Utility

$$V_{t}^{H} = \max_{a_{t+1}^{H}, d_{t+1}^{H}, c_{t}^{H}} \left\{ \left(\left(1 - \beta\right) \left(c_{t}^{H}\right)^{1 - \sigma} + \beta \left[\mathbb{E}_{t} \left(V_{t+1}^{H}\right)^{1 - \gamma}\right]^{\frac{1 - \sigma}{1 - \gamma}}\right)^{\frac{1}{1 - \sigma}} \right\}$$
(14)

Budget Constraint

$$c_{t}^{H} + (Q_{t} + f_{t})a_{t+1}^{H} + d_{t+1}^{H} = R_{t}^{A}a_{t}^{H} + \tilde{R}_{t}^{D}d_{t}^{H} + W_{t} + \Pi_{t}$$
(15)

Asset Holding Cost

$$f_t = \chi \max\left(\frac{a_{t+1}^H}{A_{t+1}} - \zeta, \mathbf{0}\right) \tag{16}$$

Consumption good producers' problem •••••

$$V_{t}^{F} = \max_{a_{t+1}^{F}, k_{t+1}, l_{t}} \left(\Pi_{t}^{F} + \mathbb{E}_{t} \Lambda_{t, t+1} V_{t+1}^{F} \right)$$
(17)

s.t.

$$\Pi_{t}^{F} = e^{\mu^{A}} s_{t}^{\alpha} l_{t}^{1-\alpha} + (1-\delta) Q_{t} s_{t} - Q_{t} k_{t+1} - W_{t} l_{t} - R_{t}^{A} a_{t}^{F} + a_{t+1}^{F}$$
(18)

$$k_{t+1} = a_{t+1}^{F} (19)$$

$$k_t = Z_t s_t \tag{20}$$

$$\ln Z_t = (1 - \rho^Z)\mu_t^Z + \rho^Z \ln Z_{t-1} + \varepsilon_t^Z$$
(21)

$$\mu_t^Z = \begin{cases} \mu^{Z,H} & \text{if no run} \\ \mu^{Z,L} \le \mu^{Z,H} & \text{if run} \end{cases}$$
(22)

Capital good producers' problem ••••

$$V_t^Q = \max_{i_t} \left(\Pi_t^Q + \mathbb{E}_t \Lambda_{t,t+1} \, V_{t+1}^Q \right) \tag{23}$$

s.t.

$$\Pi_{t}^{Q} = Q_{t}i_{t} - i_{t} - \frac{\theta}{2}\left(\frac{i_{t}}{I_{t-1}} - 1\right)^{2}I_{t-1}$$
(24)

Model Fit - Targeted Moments - Aggregates

	Data / Target	Model
St. Dev., Output (%)	4.073	4.875
St. Dev., Investment (%)	12.311	10.090
Autocorrelation, Output	99.008	98.930

Model Fit - Targeted Moments - Asset Prices

	Data / Target	Model
St. Dev., Output (%)	4.073	4.875
St. Dev., Investment (%)	12.311	10.090
Autocorrelation, Output	99.008	98.930
Deposit Rate in SSS (% p.a.)	1.870	1.875
Credit Spread in SSS (% p.a.)	3.886	3.885
St. Dev., Deposit Rate (%)	2.107	1.692
St. Dev., Credit Spread (%)	1.614	1.293

Model Fit - Targeted Moments - Financial Sector

	Data / Target	Model
St. Dev., Output (%)	4.073	4.875
St. Dev., Investment (%)	12.311	10.090
Autocorrelation, Output	99.008	98.930
Deposit Rate in SSS (% p.a.)	1.870	1.875
Credit Spread in SSS (% p.a.)	3.886	3.885
St. Dev., Deposit Rate (%)	2.107	1.692
St. Dev., Credit Spread (%)	1.614	1.293
Bank Lending/Total Lending in SSS (%)	50	47.894
Bank Leverage in SSS	10	9.512

Model Fit - Targeted Moments - Financial Crises

	Data / Target	Model
St. Dev., Output (%)	4.073	4.875
St. Dev., Investment (%)	12.311	10.090
Autocorrelation, Output	99.008	98.930
Deposit Rate in SSS (% p.a.)	1.870	1.875
Credit Spread in SSS (% p.a.)	3.886	3.885
St. Dev., Deposit Rate (%)	2.107	1.692
St. Dev., Credit Spread (%)	1.614	1.293
Bank Lending/Total Lending in SSS (%)	50	47.894
Bank Leverage in SSS	10	9.512
Bank Run Frequency (% p.a.)	4.089	4.156
Bank Run Duration (yrs)	0.750	0.747
Mean, Δ Credit Spread in Crisis (% p.a.)	7.290	7.341

- Basu, S. and B. Bundick (2017). Uncertainty Shocks in a Model of Effective Demand. *Econometrica* 85(3), 937–958.
- Begenau, J. (2019). Capital Requirements, Risk Choice, and Liquidity Provision in a Business Cycle Model. *Journal of Financial Economics*.
- Begenau, J. and T. Landvoigt (2018). Financial Regulation in a Quantitative Model of The Modern Banking System. *SSRN Electronic Journal*.
- Boissay, F., F. Collard, and F. Smets (2016). Booms and Banking Crises. *Journal of Political Economy* 124(2), 489–538.
- Brunnermeier, M. K. and Y. Sannikov (2014). A Macroeconomic Model with a Financial Sector. *American Economic Review 104*(2), 379–421.
- Christiano, L. and D. Ikeda (2016, may). Bank Leverage and Social Welfare. *American Economic Review: Papers & Proceedings 106*(5), 560–564.
- Di Tella, S. (2019, jan). Optimal Regulation of Financial Intermediaries. *American Economic Review 109*(1), 271–313.
- Ferrante, F. (2018). A Model of Endogenous Loan Quality and the Collapse of the Shadow Banking System. *American Economic Journal: Macroeconomics 10*(4), 152–201.
- Gertler, M. and N. Kiyotaki (2015). Banking, Liquidity, and Bank Runs in an Infinite Horizon Economy. *American Economic Review 105*(7), 2011–2043.
 Gertler, M., N. Kiyotaki, and A. Prestipino (2016, may). Anticipated Banking

Panics. American Economic Review 106(5), 554–559.

- Gertler, M., N. Kiyotaki, and A. Prestipino (2019a). A Macroeconomic Model with Financial Panics. *Review of Economic Studies*.
- Gertler, M., N. Kiyotaki, and A. Prestipino (2019b). Credit Booms, Banking Crises and Macroprudential Policy. *Unpublished Manuscript*.
- Gertler, M., N. Kiyotaki, and A. Queralto (2012). Financial crises, bank risk exposure and government financial policy. *Journal of Monetary Economics 59*, S17–S34.
- Gourio, F. (2012). Disaster Risk and Business Cycles. *American Economic Review 102*(6), 2734–2766.
- He, Z. and A. Krishnamurthy (2012). A Model of Capital and Crises. *Review* of *Economic Studies* 79(2), 735–777.